利用双功能还原氧化锌纳米棒对光激发CdS电荷进行萃取和输运,增强了界面稳定性和光电化学活性

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Uzma Naz , Jaweria Ambreen , Asad Mumtaz , Hina Sajid , Sabahat Sardar , Samiullah Khan , Syafiqah Saidin , Mohammad Rafe Hatshan , Mujeeb Khan
{"title":"利用双功能还原氧化锌纳米棒对光激发CdS电荷进行萃取和输运,增强了界面稳定性和光电化学活性","authors":"Uzma Naz ,&nbsp;Jaweria Ambreen ,&nbsp;Asad Mumtaz ,&nbsp;Hina Sajid ,&nbsp;Sabahat Sardar ,&nbsp;Samiullah Khan ,&nbsp;Syafiqah Saidin ,&nbsp;Mohammad Rafe Hatshan ,&nbsp;Mujeeb Khan","doi":"10.1016/j.mseb.2025.118568","DOIUrl":null,"url":null,"abstract":"<div><div>Reduced ZnO (R-ZnO) nanorods (NRs) effectively improved the PEC efficiency by promoting charge separation and transport within the CdS/R-ZnO NRs photoelectrode. The CdS/R-ZnO NRs heterostructure exploits molecular extrinsic defects created by ZnO reduction, enabling efficient collection of photoexcited charges from CdS as a sensitizer. The optimized photoanode (15-CdS/R-ZnO NRs) achieved a highest photocurrent density of 5.28 mA/cm<sup>2</sup> at 1.23 V (RHE), which is 15 times higher than pristine ZnO NRs (0.34 mA/cm<sup>2</sup>) and 3 times greater than 15-CdS/ZnO NRs (1.65 mA/cm<sup>2</sup>). Photoluminescence spectroscopy demonstrated a significantly reduced electron-hole recombination rate, while electrochemical impedance spectroscopy (EIS) revealed a minimal charge transfer resistance (Rct) of 2.49 kΩ under illumination. Additionally, the photoanode displayed an exceptional donor density of 1.9 × 10<sup>21</sup> cm<sup>−3</sup> and a prolonged carrier lifetime of 113.7 s. These findings paved the way to utilize defect engineering to enhance existing type-II, and S-scheme based photocatalysts.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118568"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent extraction and transportation of photoexcited CdS charges using bi-functional reduced ZnO nanorods for enhanced interface stability and photoelectrochemical activity\",\"authors\":\"Uzma Naz ,&nbsp;Jaweria Ambreen ,&nbsp;Asad Mumtaz ,&nbsp;Hina Sajid ,&nbsp;Sabahat Sardar ,&nbsp;Samiullah Khan ,&nbsp;Syafiqah Saidin ,&nbsp;Mohammad Rafe Hatshan ,&nbsp;Mujeeb Khan\",\"doi\":\"10.1016/j.mseb.2025.118568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reduced ZnO (R-ZnO) nanorods (NRs) effectively improved the PEC efficiency by promoting charge separation and transport within the CdS/R-ZnO NRs photoelectrode. The CdS/R-ZnO NRs heterostructure exploits molecular extrinsic defects created by ZnO reduction, enabling efficient collection of photoexcited charges from CdS as a sensitizer. The optimized photoanode (15-CdS/R-ZnO NRs) achieved a highest photocurrent density of 5.28 mA/cm<sup>2</sup> at 1.23 V (RHE), which is 15 times higher than pristine ZnO NRs (0.34 mA/cm<sup>2</sup>) and 3 times greater than 15-CdS/ZnO NRs (1.65 mA/cm<sup>2</sup>). Photoluminescence spectroscopy demonstrated a significantly reduced electron-hole recombination rate, while electrochemical impedance spectroscopy (EIS) revealed a minimal charge transfer resistance (Rct) of 2.49 kΩ under illumination. Additionally, the photoanode displayed an exceptional donor density of 1.9 × 10<sup>21</sup> cm<sup>−3</sup> and a prolonged carrier lifetime of 113.7 s. These findings paved the way to utilize defect engineering to enhance existing type-II, and S-scheme based photocatalysts.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"321 \",\"pages\":\"Article 118568\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725005926\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005926","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

还原ZnO (R-ZnO)纳米棒通过促进电荷在CdS/R-ZnO NRs光电极内的分离和输运,有效地提高了PEC效率。CdS/R-ZnO NRs异质结构利用ZnO还原产生的分子外部缺陷,能够有效地从CdS中收集光激发电荷作为敏化剂。优化后的光阳极(15- cds /R-ZnO NRs)在1.23 V (RHE)下光电流密度最高,为5.28 mA/cm2,是原始ZnO NRs (0.34 mA/cm2)的15倍,是15- cds /ZnO NRs (1.65 mA/cm2)的3倍。光致发光光谱显示,在光照条件下,电子-空穴复合速率显著降低,电化学阻抗谱(EIS)显示,电荷转移电阻(Rct)最小,为2.49 kΩ。此外,该光阳极具有1.9 × 1021 cm−3的给体密度和113.7 s的载流子寿命。这些发现为利用缺陷工程来增强现有的ii型和s型光催化剂铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Excellent extraction and transportation of photoexcited CdS charges using bi-functional reduced ZnO nanorods for enhanced interface stability and photoelectrochemical activity

Excellent extraction and transportation of photoexcited CdS charges using bi-functional reduced ZnO nanorods for enhanced interface stability and photoelectrochemical activity
Reduced ZnO (R-ZnO) nanorods (NRs) effectively improved the PEC efficiency by promoting charge separation and transport within the CdS/R-ZnO NRs photoelectrode. The CdS/R-ZnO NRs heterostructure exploits molecular extrinsic defects created by ZnO reduction, enabling efficient collection of photoexcited charges from CdS as a sensitizer. The optimized photoanode (15-CdS/R-ZnO NRs) achieved a highest photocurrent density of 5.28 mA/cm2 at 1.23 V (RHE), which is 15 times higher than pristine ZnO NRs (0.34 mA/cm2) and 3 times greater than 15-CdS/ZnO NRs (1.65 mA/cm2). Photoluminescence spectroscopy demonstrated a significantly reduced electron-hole recombination rate, while electrochemical impedance spectroscopy (EIS) revealed a minimal charge transfer resistance (Rct) of 2.49 kΩ under illumination. Additionally, the photoanode displayed an exceptional donor density of 1.9 × 1021 cm−3 and a prolonged carrier lifetime of 113.7 s. These findings paved the way to utilize defect engineering to enhance existing type-II, and S-scheme based photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信