Yuemeng Ji, Jiaxin Wang, Yongpeng Ji, Yanpeng Gao, Weina Zhang, Jiangyao Chen, Guiying Li, Taicheng An
{"title":"醇控制的单羰基寡聚化机制:细颗粒物爆炸性增长的影响","authors":"Yuemeng Ji, Jiaxin Wang, Yongpeng Ji, Yanpeng Gao, Weina Zhang, Jiangyao Chen, Guiying Li, Taicheng An","doi":"10.1038/s41612-025-01138-1","DOIUrl":null,"url":null,"abstract":"<p>Secondary organic aerosol (SOA), as a major component of fine particulate matter (PM<sub>2.5</sub>), significantly impacts air quality, climate, and human health. Although the aqueous chemistry of oxygenated organic compounds (OOCs) is acknowledged as an important contributor to the global SOA budget, the mechanisms by which this process yields SOA-forming oligomers remain unclear. Therefore, we clarify the aqueous-phase reactions of monocarbonyl OOCs (MOOCs, e.g., octanal and 2,4-hexadienal) in sulfuric acid aerosols using quantum chemistry and kinetic calculations. We identified all intermediates and products for established reaction pathways and explored a newly alcohol-governed mechanism for MOOC oligomerization, independent of prior atmospheric knowledge. Oligomers are yielded by the repetition of simple organic reactions, including protonation/deprotonation, hydration/dehydration, and nucleophilic addition, leading to rapid SOA formation. Our results unveil that an alcohol-governed aqueous-phase reaction mechanism of MOOC is likely prevalent across other OOCs in the atmosphere and helps to explain the explosive growth of PM<sub>2.5</sub>.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"27 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alcohol-governed mechanism of monocarbonyl oligomerization: implications for explosive growth of fine particulate matter\",\"authors\":\"Yuemeng Ji, Jiaxin Wang, Yongpeng Ji, Yanpeng Gao, Weina Zhang, Jiangyao Chen, Guiying Li, Taicheng An\",\"doi\":\"10.1038/s41612-025-01138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Secondary organic aerosol (SOA), as a major component of fine particulate matter (PM<sub>2.5</sub>), significantly impacts air quality, climate, and human health. Although the aqueous chemistry of oxygenated organic compounds (OOCs) is acknowledged as an important contributor to the global SOA budget, the mechanisms by which this process yields SOA-forming oligomers remain unclear. Therefore, we clarify the aqueous-phase reactions of monocarbonyl OOCs (MOOCs, e.g., octanal and 2,4-hexadienal) in sulfuric acid aerosols using quantum chemistry and kinetic calculations. We identified all intermediates and products for established reaction pathways and explored a newly alcohol-governed mechanism for MOOC oligomerization, independent of prior atmospheric knowledge. Oligomers are yielded by the repetition of simple organic reactions, including protonation/deprotonation, hydration/dehydration, and nucleophilic addition, leading to rapid SOA formation. Our results unveil that an alcohol-governed aqueous-phase reaction mechanism of MOOC is likely prevalent across other OOCs in the atmosphere and helps to explain the explosive growth of PM<sub>2.5</sub>.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01138-1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01138-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
An alcohol-governed mechanism of monocarbonyl oligomerization: implications for explosive growth of fine particulate matter
Secondary organic aerosol (SOA), as a major component of fine particulate matter (PM2.5), significantly impacts air quality, climate, and human health. Although the aqueous chemistry of oxygenated organic compounds (OOCs) is acknowledged as an important contributor to the global SOA budget, the mechanisms by which this process yields SOA-forming oligomers remain unclear. Therefore, we clarify the aqueous-phase reactions of monocarbonyl OOCs (MOOCs, e.g., octanal and 2,4-hexadienal) in sulfuric acid aerosols using quantum chemistry and kinetic calculations. We identified all intermediates and products for established reaction pathways and explored a newly alcohol-governed mechanism for MOOC oligomerization, independent of prior atmospheric knowledge. Oligomers are yielded by the repetition of simple organic reactions, including protonation/deprotonation, hydration/dehydration, and nucleophilic addition, leading to rapid SOA formation. Our results unveil that an alcohol-governed aqueous-phase reaction mechanism of MOOC is likely prevalent across other OOCs in the atmosphere and helps to explain the explosive growth of PM2.5.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.