Shupei Sheng, Yan Zhang, Limin Jin, Weiting Sun, Dunwan Zhu, Lin Mei, Xia Dong, Feng Lv
{"title":"铁蛋白靶向生物杂交通过激活内源性铁和同时补充外源性铁触发铁下垂免疫治疗","authors":"Shupei Sheng, Yan Zhang, Limin Jin, Weiting Sun, Dunwan Zhu, Lin Mei, Xia Dong, Feng Lv","doi":"10.1038/s41467-025-61419-4","DOIUrl":null,"url":null,"abstract":"<p>The key to achieving synergistic ferroptosis immunotherapy is enhancing the iron content in tumor cells, improving specific immunity, and regulating the tumor microenvironment. In this study, a drug-free biohybrid system targeting ferritin is developed using M1 macrophage microvesicles and HKN<sub>15</sub>-modified Prussian blue nanoparticles for synergistic ferroptosis immunotherapy. HKN<sub>15</sub>-modified nanoparticles simultaneously enhance iron content by activating endogenous iron ions and replenishing exogenous iron ions, which disrupts iron homeostasis for inducing ferroptosis in tumor cells. Photothermally enhanced ferroptosis based on Prussian blue nanoparticles also stimulates dendritic cell maturation. Moreover, M1 vesicles and iron ions from Prussian blue nanoparticles promote macrophage polarization to improve specific immunity. The mutual promotion of ferroptosis and antitumor immunity effectively results in a synergistic therapeutic circuit for inhibiting tumor growth and preventing cancer recurrence and metastasis in 4T1 tumor-bearing female mice, thus offering a promising strategy for drug-free biohybrid system-mediated ferroptosis immunotherapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"646 1","pages":"6045"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ferritin-targeted biohybrid triggering ferroptosis immunotherapy via activating endogenous iron and replenishing exogenous iron simultaneously\",\"authors\":\"Shupei Sheng, Yan Zhang, Limin Jin, Weiting Sun, Dunwan Zhu, Lin Mei, Xia Dong, Feng Lv\",\"doi\":\"10.1038/s41467-025-61419-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The key to achieving synergistic ferroptosis immunotherapy is enhancing the iron content in tumor cells, improving specific immunity, and regulating the tumor microenvironment. In this study, a drug-free biohybrid system targeting ferritin is developed using M1 macrophage microvesicles and HKN<sub>15</sub>-modified Prussian blue nanoparticles for synergistic ferroptosis immunotherapy. HKN<sub>15</sub>-modified nanoparticles simultaneously enhance iron content by activating endogenous iron ions and replenishing exogenous iron ions, which disrupts iron homeostasis for inducing ferroptosis in tumor cells. Photothermally enhanced ferroptosis based on Prussian blue nanoparticles also stimulates dendritic cell maturation. Moreover, M1 vesicles and iron ions from Prussian blue nanoparticles promote macrophage polarization to improve specific immunity. The mutual promotion of ferroptosis and antitumor immunity effectively results in a synergistic therapeutic circuit for inhibiting tumor growth and preventing cancer recurrence and metastasis in 4T1 tumor-bearing female mice, thus offering a promising strategy for drug-free biohybrid system-mediated ferroptosis immunotherapy.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"646 1\",\"pages\":\"6045\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61419-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61419-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A ferritin-targeted biohybrid triggering ferroptosis immunotherapy via activating endogenous iron and replenishing exogenous iron simultaneously
The key to achieving synergistic ferroptosis immunotherapy is enhancing the iron content in tumor cells, improving specific immunity, and regulating the tumor microenvironment. In this study, a drug-free biohybrid system targeting ferritin is developed using M1 macrophage microvesicles and HKN15-modified Prussian blue nanoparticles for synergistic ferroptosis immunotherapy. HKN15-modified nanoparticles simultaneously enhance iron content by activating endogenous iron ions and replenishing exogenous iron ions, which disrupts iron homeostasis for inducing ferroptosis in tumor cells. Photothermally enhanced ferroptosis based on Prussian blue nanoparticles also stimulates dendritic cell maturation. Moreover, M1 vesicles and iron ions from Prussian blue nanoparticles promote macrophage polarization to improve specific immunity. The mutual promotion of ferroptosis and antitumor immunity effectively results in a synergistic therapeutic circuit for inhibiting tumor growth and preventing cancer recurrence and metastasis in 4T1 tumor-bearing female mice, thus offering a promising strategy for drug-free biohybrid system-mediated ferroptosis immunotherapy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.