量子自然随机成对坐标下降

IF 8.3 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Mohammad Aamir Sohail, Mohsen Heidari, S. Sandeep Pradhan
{"title":"量子自然随机成对坐标下降","authors":"Mohammad Aamir Sohail, Mohsen Heidari, S. Sandeep Pradhan","doi":"10.1038/s41534-025-01047-4","DOIUrl":null,"url":null,"abstract":"<p>Variational quantum algorithms, optimized using gradient-based methods, often exhibit sub-optimal convergence performance due to their dependence on Euclidean geometry. Quantum natural gradient descent (QNGD) is a more efficient method that incorporates the geometry of the state space via a quantum information metric. However, QNGD is computationally intensive and suffers from high sample complexity. In this work, we formulate a novel quantum information metric and construct an unbiased estimator for this metric using single-shot measurements. We develop a quantum optimization algorithm that leverages the geometry of the state space via this estimator while avoiding full-state tomography, as in conventional techniques. We provide the convergence analysis of the algorithm under mild conditions. Furthermore, we provide experimental results that demonstrate the better sample complexity and faster convergence of our algorithm compared to the state-of-the-art approaches. Our results illustrate the algorithm’s ability to avoid saddle points and local minima.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"18 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum natural stochastic pairwise coordinate descent\",\"authors\":\"Mohammad Aamir Sohail, Mohsen Heidari, S. Sandeep Pradhan\",\"doi\":\"10.1038/s41534-025-01047-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variational quantum algorithms, optimized using gradient-based methods, often exhibit sub-optimal convergence performance due to their dependence on Euclidean geometry. Quantum natural gradient descent (QNGD) is a more efficient method that incorporates the geometry of the state space via a quantum information metric. However, QNGD is computationally intensive and suffers from high sample complexity. In this work, we formulate a novel quantum information metric and construct an unbiased estimator for this metric using single-shot measurements. We develop a quantum optimization algorithm that leverages the geometry of the state space via this estimator while avoiding full-state tomography, as in conventional techniques. We provide the convergence analysis of the algorithm under mild conditions. Furthermore, we provide experimental results that demonstrate the better sample complexity and faster convergence of our algorithm compared to the state-of-the-art approaches. Our results illustrate the algorithm’s ability to avoid saddle points and local minima.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01047-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01047-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

使用基于梯度的方法优化的变分量子算法,由于依赖于欧几里得几何,往往表现出次优的收敛性能。量子自然梯度下降(QNGD)是一种更有效的方法,它通过量子信息度量来结合状态空间的几何特征。然而,QNGD计算量大,样本复杂度高。在这项工作中,我们提出了一个新的量子信息度量,并使用单次测量构造了该度量的无偏估计量。我们开发了一种量子优化算法,该算法通过该估计器利用状态空间的几何形状,同时避免了传统技术中的全状态层析成像。给出了算法在温和条件下的收敛性分析。此外,我们提供的实验结果表明,与最先进的方法相比,我们的算法具有更好的样本复杂度和更快的收敛性。我们的结果表明,该算法能够避免鞍点和局部最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum natural stochastic pairwise coordinate descent

Quantum natural stochastic pairwise coordinate descent

Variational quantum algorithms, optimized using gradient-based methods, often exhibit sub-optimal convergence performance due to their dependence on Euclidean geometry. Quantum natural gradient descent (QNGD) is a more efficient method that incorporates the geometry of the state space via a quantum information metric. However, QNGD is computationally intensive and suffers from high sample complexity. In this work, we formulate a novel quantum information metric and construct an unbiased estimator for this metric using single-shot measurements. We develop a quantum optimization algorithm that leverages the geometry of the state space via this estimator while avoiding full-state tomography, as in conventional techniques. We provide the convergence analysis of the algorithm under mild conditions. Furthermore, we provide experimental results that demonstrate the better sample complexity and faster convergence of our algorithm compared to the state-of-the-art approaches. Our results illustrate the algorithm’s ability to avoid saddle points and local minima.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信