Dr. Ji-Eun Jang, Vithiya Muralidharan, Yoon Seong Kim, Dr. Hyunwoo Kim, Prof. Jungki Ryu, Prof. Guihua Yu, Prof. Dong-Hwa Seo, Prof. Hyun-Wook Lee
{"title":"铁铬液流电池中六氰铬基氧化还原介质的配体交换动力学研究。","authors":"Dr. Ji-Eun Jang, Vithiya Muralidharan, Yoon Seong Kim, Dr. Hyunwoo Kim, Prof. Jungki Ryu, Prof. Guihua Yu, Prof. Dong-Hwa Seo, Prof. Hyun-Wook Lee","doi":"10.1002/anie.202507119","DOIUrl":null,"url":null,"abstract":"<p>Aqueous redox flow batteries (AQRFBs) are revolutionizing energy storage by integrating sustainability with cutting-edge innovation. Among them, Iron-Chromium RFBs (Fe-Cr RFBs), which utilize aqueous-based electrolytes, effectively address critical challenges in renewable energy integration while offering unparalleled safety, low-cost scalability and environmental compatibility. Potassium hexacyanochromate (K<sub>3</sub>[Cr(CN)<sub>6</sub>]) has emerged as a promising negolyte material in Fe-Cr RFBs due to its favorable electrochemical properties. However, enhancing its long-term stability and elucidating its structural transformations remain crucial for optimized performance. Investigations into ligand exchange mechanism reveal connections to detrimental side reactions, notably hydrogen evolution reaction (HER) and hexacyanochromate instability, highlighting pathways for targeted improvement. Density functional theory (DFT) calculations illuminate the effects of ligand exchange dynamics and structural variations on redox stability, providing mechanistic insights into electrolyte behavior. By strategically incorporating sodium hydroxide with sodium cyanide as supporting electrolytes, our study demonstrates significantly improved stability of the redox couple, achieving a stable cycling performance over 250 cycles with an energy density of 13.91 Wh L<sup>−1</sup> and energy efficiencies exceeding 76%–77%. This research provides valuable insights into the degradation pathways of hexacyanochromate-based negolyte and emphasizes the importance of optimized electrolyte design for advancing sustainable energy storage technologies.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 38","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202507119","citationCount":"0","resultStr":"{\"title\":\"Elucidating Ligand Exchange Dynamics of Hexacyanochromate-Based Redox Mediators in Aqueous Iron-Chromium Redox Flow Batteries\",\"authors\":\"Dr. Ji-Eun Jang, Vithiya Muralidharan, Yoon Seong Kim, Dr. Hyunwoo Kim, Prof. Jungki Ryu, Prof. Guihua Yu, Prof. Dong-Hwa Seo, Prof. Hyun-Wook Lee\",\"doi\":\"10.1002/anie.202507119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous redox flow batteries (AQRFBs) are revolutionizing energy storage by integrating sustainability with cutting-edge innovation. Among them, Iron-Chromium RFBs (Fe-Cr RFBs), which utilize aqueous-based electrolytes, effectively address critical challenges in renewable energy integration while offering unparalleled safety, low-cost scalability and environmental compatibility. Potassium hexacyanochromate (K<sub>3</sub>[Cr(CN)<sub>6</sub>]) has emerged as a promising negolyte material in Fe-Cr RFBs due to its favorable electrochemical properties. However, enhancing its long-term stability and elucidating its structural transformations remain crucial for optimized performance. Investigations into ligand exchange mechanism reveal connections to detrimental side reactions, notably hydrogen evolution reaction (HER) and hexacyanochromate instability, highlighting pathways for targeted improvement. Density functional theory (DFT) calculations illuminate the effects of ligand exchange dynamics and structural variations on redox stability, providing mechanistic insights into electrolyte behavior. By strategically incorporating sodium hydroxide with sodium cyanide as supporting electrolytes, our study demonstrates significantly improved stability of the redox couple, achieving a stable cycling performance over 250 cycles with an energy density of 13.91 Wh L<sup>−1</sup> and energy efficiencies exceeding 76%–77%. This research provides valuable insights into the degradation pathways of hexacyanochromate-based negolyte and emphasizes the importance of optimized electrolyte design for advancing sustainable energy storage technologies.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 38\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202507119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507119\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Elucidating Ligand Exchange Dynamics of Hexacyanochromate-Based Redox Mediators in Aqueous Iron-Chromium Redox Flow Batteries
Aqueous redox flow batteries (AQRFBs) are revolutionizing energy storage by integrating sustainability with cutting-edge innovation. Among them, Iron-Chromium RFBs (Fe-Cr RFBs), which utilize aqueous-based electrolytes, effectively address critical challenges in renewable energy integration while offering unparalleled safety, low-cost scalability and environmental compatibility. Potassium hexacyanochromate (K3[Cr(CN)6]) has emerged as a promising negolyte material in Fe-Cr RFBs due to its favorable electrochemical properties. However, enhancing its long-term stability and elucidating its structural transformations remain crucial for optimized performance. Investigations into ligand exchange mechanism reveal connections to detrimental side reactions, notably hydrogen evolution reaction (HER) and hexacyanochromate instability, highlighting pathways for targeted improvement. Density functional theory (DFT) calculations illuminate the effects of ligand exchange dynamics and structural variations on redox stability, providing mechanistic insights into electrolyte behavior. By strategically incorporating sodium hydroxide with sodium cyanide as supporting electrolytes, our study demonstrates significantly improved stability of the redox couple, achieving a stable cycling performance over 250 cycles with an energy density of 13.91 Wh L−1 and energy efficiencies exceeding 76%–77%. This research provides valuable insights into the degradation pathways of hexacyanochromate-based negolyte and emphasizes the importance of optimized electrolyte design for advancing sustainable energy storage technologies.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.