阴离子配位调控的金属有机笼高效CO2光还原。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Linjing Huang, Dr. Liyang Qin, Dr. Sijie Wan, Dr. Yayu Yan, Prof. Shaowen Cao, Prof. Jian Zhang, Prof. Tianhua Zhou
{"title":"阴离子配位调控的金属有机笼高效CO2光还原。","authors":"Dr. Linjing Huang,&nbsp;Dr. Liyang Qin,&nbsp;Dr. Sijie Wan,&nbsp;Dr. Yayu Yan,&nbsp;Prof. Shaowen Cao,&nbsp;Prof. Jian Zhang,&nbsp;Prof. Tianhua Zhou","doi":"10.1002/anie.202509280","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) provides a promising strategy for producing high-value chemicals and fuels. However, developing high-performance photocatalysts for CO<sub>2</sub> reduction remains a great challenge due to the poor stability of reaction intermediates. Herein, we present an anionic coordination strategy to facilitate the stabilization of intermediates by constructing halogen-coordinated metal-organic cages (MOCs) (Ni<sub>8</sub>L<sub>12</sub>X<sub>4</sub>, X = Cl, Br, I). Theoretical calculations show that the formation of *COOH intermediate is the rate-limiting step and halogen coordination effectively regulates the energy barrier for this reaction. Notably, iodide anions significantly reduce the energy gap between the Ni <i>d</i> and iodide <i>p</i> orbitals, enhancing electron transfer from the Ni center to adsorbed CO<sub>2</sub> and promoting the production of *COOH. As a result, Ni<sub>8</sub>L<sub>12</sub>I<sub>4</sub> demonstrates superior performance with a CO production rate of 2680.23 <i>µ</i>mol g<sup>−1</sup> h<sup>−1</sup> and 95% selectivity, outperforming Cl- and Br-coordinated Ni MOC by 200- and 5-fold, respectively. This work opens a new coordination engineering strategy for fabricating efficient photocatalysts for CO<sub>2</sub> reduction.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 36","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anionic Coordination-Regulated Metal-Organic Cages for Efficient CO2 Photoreduction\",\"authors\":\"Dr. Linjing Huang,&nbsp;Dr. Liyang Qin,&nbsp;Dr. Sijie Wan,&nbsp;Dr. Yayu Yan,&nbsp;Prof. Shaowen Cao,&nbsp;Prof. Jian Zhang,&nbsp;Prof. Tianhua Zhou\",\"doi\":\"10.1002/anie.202509280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) provides a promising strategy for producing high-value chemicals and fuels. However, developing high-performance photocatalysts for CO<sub>2</sub> reduction remains a great challenge due to the poor stability of reaction intermediates. Herein, we present an anionic coordination strategy to facilitate the stabilization of intermediates by constructing halogen-coordinated metal-organic cages (MOCs) (Ni<sub>8</sub>L<sub>12</sub>X<sub>4</sub>, X = Cl, Br, I). Theoretical calculations show that the formation of *COOH intermediate is the rate-limiting step and halogen coordination effectively regulates the energy barrier for this reaction. Notably, iodide anions significantly reduce the energy gap between the Ni <i>d</i> and iodide <i>p</i> orbitals, enhancing electron transfer from the Ni center to adsorbed CO<sub>2</sub> and promoting the production of *COOH. As a result, Ni<sub>8</sub>L<sub>12</sub>I<sub>4</sub> demonstrates superior performance with a CO production rate of 2680.23 <i>µ</i>mol g<sup>−1</sup> h<sup>−1</sup> and 95% selectivity, outperforming Cl- and Br-coordinated Ni MOC by 200- and 5-fold, respectively. This work opens a new coordination engineering strategy for fabricating efficient photocatalysts for CO<sub>2</sub> reduction.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 36\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509280\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化还原二氧化碳(CO2)为生产高价值化学品和燃料提供了一种很有前途的策略。然而,由于反应中间体稳定性差,开发用于CO2还原的高性能光催化剂仍然是一个巨大的挑战。本文提出了一种阴离子配位策略,通过构建卤素配位金属-有机笼(Ni8L12X4, X = Cl, Br, I)来促进中间体。理论计算表明,*COOH中间体的生成是该反应的限速步骤,卤素配位有效地调节了该反应的能垒。值得注意的是,碘化物阴离子显著减小了Ni d轨道和碘化物p轨道之间的能隙,促进了电子从Ni中心向吸附的CO2转移,促进了*COOH的生成。结果表明,Ni8L12I4的CO产率为2680.23 μmol g-1 h-1,选择性为95%,分别是cl -配位和br -配位Ni MOC的200倍和5倍。这项工作为制造高效的CO2还原光催化剂开辟了一种新的协同工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anionic Coordination-Regulated Metal-Organic Cages for Efficient CO2 Photoreduction

Anionic Coordination-Regulated Metal-Organic Cages for Efficient CO2 Photoreduction

Photocatalytic reduction of carbon dioxide (CO2) provides a promising strategy for producing high-value chemicals and fuels. However, developing high-performance photocatalysts for CO2 reduction remains a great challenge due to the poor stability of reaction intermediates. Herein, we present an anionic coordination strategy to facilitate the stabilization of intermediates by constructing halogen-coordinated metal-organic cages (MOCs) (Ni8L12X4, X = Cl, Br, I). Theoretical calculations show that the formation of *COOH intermediate is the rate-limiting step and halogen coordination effectively regulates the energy barrier for this reaction. Notably, iodide anions significantly reduce the energy gap between the Ni d and iodide p orbitals, enhancing electron transfer from the Ni center to adsorbed CO2 and promoting the production of *COOH. As a result, Ni8L12I4 demonstrates superior performance with a CO production rate of 2680.23 µmol g−1 h−1 and 95% selectivity, outperforming Cl- and Br-coordinated Ni MOC by 200- and 5-fold, respectively. This work opens a new coordination engineering strategy for fabricating efficient photocatalysts for CO2 reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信