微流控芯片上用于亚pm卡那霉素检测的磁酶协同驱动的光电化学感应传感器。

IF 5.4 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-07-02 DOI:10.1039/D5LC00450K
Yuchen Shen, YunYi Shi and Juan Wang
{"title":"微流控芯片上用于亚pm卡那霉素检测的磁酶协同驱动的光电化学感应传感器。","authors":"Yuchen Shen, YunYi Shi and Juan Wang","doi":"10.1039/D5LC00450K","DOIUrl":null,"url":null,"abstract":"<p >The escalating global concern over antibiotic contamination in food chains and aquatic ecosystems demands innovative solutions for rapid, on-site monitoring of residual drugs. This study presents an autonomous microfluidic photoelectrochemical (PEC) biosensing platform that synergizes magnetic purification, enzymatic amplification, and nanohybrid-enhanced signal transduction for field-deployable, ultrasensitive kanamycin (KAN) detection. The system integrates three functional layers: aptamer-functionalized magnetic beads (MBs) for selective KAN isolation, alkaline phosphatase (ALP)-catalyzed hydrolysis of <small>L</small>-ascorbic acid 2-phosphate (AAP) to generate electron-donating ascorbic acid (AA), and a TiO<small><sub>2</sub></small>/Nb<small><sub>2</sub></small>C/carbon nitride (CN) photoanode with a type-II heterojunction architecture for an amplified photocurrent response. This cascaded mechanism achieves a 0.00142 nM detection limit (S/N = 3). Crucially, the polydimethylsiloxane (PDMS)-based microfluidic chip automates critical workflows—including target–probe mixing, dsDNA displacement, MB separation, and ALP–Apt transfer through serpentine channels and pressure-driven flow control, eliminating manual intervention. A wireless PEC module coupled with smartphone-based signal processing enables real-time parameter optimization and data transmission <em>via</em> Bluetooth, removing reliance on external instrumentation. The modular design permits rapid adaptation to diverse targets through interchangeable aptamers, validated <em>via</em> spike-recovery tests in real samples. By unifying enzymatic catalysis, magnetic microfluidics, and nanomaterial-engineered photoelectrochemistry, this work establishes a paradigm for decentralized biosensing that bridges laboratory-grade sensitivity with point-of-need practicality, addressing critical gaps in antibiotic monitoring for food safety and environmental surveillance.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 15","pages":" 3730-3740"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic–enzymatic synergy driven photoelectrochemical aptasensor on a microfluidic chip for sub-pM kanamycin detection†\",\"authors\":\"Yuchen Shen, YunYi Shi and Juan Wang\",\"doi\":\"10.1039/D5LC00450K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The escalating global concern over antibiotic contamination in food chains and aquatic ecosystems demands innovative solutions for rapid, on-site monitoring of residual drugs. This study presents an autonomous microfluidic photoelectrochemical (PEC) biosensing platform that synergizes magnetic purification, enzymatic amplification, and nanohybrid-enhanced signal transduction for field-deployable, ultrasensitive kanamycin (KAN) detection. The system integrates three functional layers: aptamer-functionalized magnetic beads (MBs) for selective KAN isolation, alkaline phosphatase (ALP)-catalyzed hydrolysis of <small>L</small>-ascorbic acid 2-phosphate (AAP) to generate electron-donating ascorbic acid (AA), and a TiO<small><sub>2</sub></small>/Nb<small><sub>2</sub></small>C/carbon nitride (CN) photoanode with a type-II heterojunction architecture for an amplified photocurrent response. This cascaded mechanism achieves a 0.00142 nM detection limit (S/N = 3). Crucially, the polydimethylsiloxane (PDMS)-based microfluidic chip automates critical workflows—including target–probe mixing, dsDNA displacement, MB separation, and ALP–Apt transfer through serpentine channels and pressure-driven flow control, eliminating manual intervention. A wireless PEC module coupled with smartphone-based signal processing enables real-time parameter optimization and data transmission <em>via</em> Bluetooth, removing reliance on external instrumentation. The modular design permits rapid adaptation to diverse targets through interchangeable aptamers, validated <em>via</em> spike-recovery tests in real samples. By unifying enzymatic catalysis, magnetic microfluidics, and nanomaterial-engineered photoelectrochemistry, this work establishes a paradigm for decentralized biosensing that bridges laboratory-grade sensitivity with point-of-need practicality, addressing critical gaps in antibiotic monitoring for food safety and environmental surveillance.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 15\",\"pages\":\" 3730-3740\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00450k\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00450k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

全球对食物链和水生生态系统中抗生素污染的关注不断升级,需要创新的解决方案来快速、现场监测残留药物。本研究提出了一种自主微流体光电化学(PEC)生物传感平台,该平台协同磁净化,酶扩增和纳米混合增强信号转导,用于现场可部署的超灵敏卡那霉素(KAN)检测。该系统集成了三个功能层:用于选择性KAN分离的适配体功能化磁珠(mb),碱性磷酸酶(ALP)催化l -抗坏血酸2-磷酸(AAP)水解生成供电子的抗坏血酸(AA),以及具有ii型异质结结构的TiO2/Nb2C/氮化碳(CN)光阳极,用于放大光电流响应。该级联机制的检测限为0.00142 nM (S/N = 3)。最重要的是,基于聚二甲基硅氧烷(PDMS)的微流控芯片可以自动完成关键的工作流程,包括目标-探针混合、dsDNA位移、MB分离和通过蛇纹通道的ALP-Apt转移和压力驱动的流量控制,从而消除了人工干预。无线PEC模块与基于智能手机的信号处理相结合,可以通过蓝牙实现实时参数优化和数据传输,从而消除了对外部仪器的依赖。模块化设计允许通过可互换的适配体快速适应不同的目标,并通过实际样品中的峰值恢复测试进行验证。通过统一酶催化、磁微流体和纳米材料工程光电化学,这项工作建立了一个分散生物传感的范例,将实验室级的灵敏度与需要点的实用性联系起来,解决了食品安全和环境监测中抗生素监测的关键空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic–enzymatic synergy driven photoelectrochemical aptasensor on a microfluidic chip for sub-pM kanamycin detection†

Magnetic–enzymatic synergy driven photoelectrochemical aptasensor on a microfluidic chip for sub-pM kanamycin detection†

The escalating global concern over antibiotic contamination in food chains and aquatic ecosystems demands innovative solutions for rapid, on-site monitoring of residual drugs. This study presents an autonomous microfluidic photoelectrochemical (PEC) biosensing platform that synergizes magnetic purification, enzymatic amplification, and nanohybrid-enhanced signal transduction for field-deployable, ultrasensitive kanamycin (KAN) detection. The system integrates three functional layers: aptamer-functionalized magnetic beads (MBs) for selective KAN isolation, alkaline phosphatase (ALP)-catalyzed hydrolysis of L-ascorbic acid 2-phosphate (AAP) to generate electron-donating ascorbic acid (AA), and a TiO2/Nb2C/carbon nitride (CN) photoanode with a type-II heterojunction architecture for an amplified photocurrent response. This cascaded mechanism achieves a 0.00142 nM detection limit (S/N = 3). Crucially, the polydimethylsiloxane (PDMS)-based microfluidic chip automates critical workflows—including target–probe mixing, dsDNA displacement, MB separation, and ALP–Apt transfer through serpentine channels and pressure-driven flow control, eliminating manual intervention. A wireless PEC module coupled with smartphone-based signal processing enables real-time parameter optimization and data transmission via Bluetooth, removing reliance on external instrumentation. The modular design permits rapid adaptation to diverse targets through interchangeable aptamers, validated via spike-recovery tests in real samples. By unifying enzymatic catalysis, magnetic microfluidics, and nanomaterial-engineered photoelectrochemistry, this work establishes a paradigm for decentralized biosensing that bridges laboratory-grade sensitivity with point-of-need practicality, addressing critical gaps in antibiotic monitoring for food safety and environmental surveillance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信