Weibin Chen,Qianghui Zheng,Wanqing Zhang,Fengfu Fu,Mei-Jin Li
{"title":"线粒体定位和聚集诱导的近红外发射铱(III)配合物用于光动力治疗。","authors":"Weibin Chen,Qianghui Zheng,Wanqing Zhang,Fengfu Fu,Mei-Jin Li","doi":"10.1021/acs.inorgchem.5c01814","DOIUrl":null,"url":null,"abstract":"In recent years, the optical functional materials of iridium(III) complexes have attracted much attention due to their excellent photophysical properties and potential biomedical applications. Among them, aggregation-induced emission (AIE) properties have shown significant advantages in photodynamic therapy (PDT). In this work, three new iridium(III) complexes with near-infrared emission were designed and synthesized, and their crystal structures were determined. All complexes exhibited significant AIE phenomena. Especially, Ir-1 containing an -NH2 functional group exhibited a unique hollow nanoparticle morphology, excellent mitochondrial targeting ability, and high reactive oxygen species (ROS) efficiency, which is expected to play an important role as a new type of nanoprobe in the field of PDT. The complex has the ability to generate both type I and type II ROS, which makes it a potent photosensitizer for the efficient phototherapy of hypoxic tumors. What is more, the complex has dual functions of PDT and chemotherapy, and their synergistic effect greatly enhances the antineoplastic effects of the reagent.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"33 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondria-Localized and Aggregation-Induced Near-Infrared Emission Iridium(III) Complexes for Photodynamic Therapy.\",\"authors\":\"Weibin Chen,Qianghui Zheng,Wanqing Zhang,Fengfu Fu,Mei-Jin Li\",\"doi\":\"10.1021/acs.inorgchem.5c01814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the optical functional materials of iridium(III) complexes have attracted much attention due to their excellent photophysical properties and potential biomedical applications. Among them, aggregation-induced emission (AIE) properties have shown significant advantages in photodynamic therapy (PDT). In this work, three new iridium(III) complexes with near-infrared emission were designed and synthesized, and their crystal structures were determined. All complexes exhibited significant AIE phenomena. Especially, Ir-1 containing an -NH2 functional group exhibited a unique hollow nanoparticle morphology, excellent mitochondrial targeting ability, and high reactive oxygen species (ROS) efficiency, which is expected to play an important role as a new type of nanoprobe in the field of PDT. The complex has the ability to generate both type I and type II ROS, which makes it a potent photosensitizer for the efficient phototherapy of hypoxic tumors. What is more, the complex has dual functions of PDT and chemotherapy, and their synergistic effect greatly enhances the antineoplastic effects of the reagent.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c01814\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c01814","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Mitochondria-Localized and Aggregation-Induced Near-Infrared Emission Iridium(III) Complexes for Photodynamic Therapy.
In recent years, the optical functional materials of iridium(III) complexes have attracted much attention due to their excellent photophysical properties and potential biomedical applications. Among them, aggregation-induced emission (AIE) properties have shown significant advantages in photodynamic therapy (PDT). In this work, three new iridium(III) complexes with near-infrared emission were designed and synthesized, and their crystal structures were determined. All complexes exhibited significant AIE phenomena. Especially, Ir-1 containing an -NH2 functional group exhibited a unique hollow nanoparticle morphology, excellent mitochondrial targeting ability, and high reactive oxygen species (ROS) efficiency, which is expected to play an important role as a new type of nanoprobe in the field of PDT. The complex has the ability to generate both type I and type II ROS, which makes it a potent photosensitizer for the efficient phototherapy of hypoxic tumors. What is more, the complex has dual functions of PDT and chemotherapy, and their synergistic effect greatly enhances the antineoplastic effects of the reagent.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.