Rui Ma, Chu Li, Qiuchen Yan, Xinyi Wang, Ruiqi Wang, Yufei Wang, Yumeng Chen, Yan Li, Cuicui Lu, Jianwei Wang, Xiaoyong Hu, Che Ting Chan, Qihuang Gong
{"title":"片上确定性任意相位控制","authors":"Rui Ma, Chu Li, Qiuchen Yan, Xinyi Wang, Ruiqi Wang, Yufei Wang, Yumeng Chen, Yan Li, Cuicui Lu, Jianwei Wang, Xiaoyong Hu, Che Ting Chan, Qihuang Gong","doi":"10.1515/nanoph-2025-0132","DOIUrl":null,"url":null,"abstract":"The stable on-chip deterministic arbitrary-phase-controlling of signal light in micro/nanometer spatial scale is an extremely important basis for large-scale and high-density integrated photonic information processing chips. Conventional phase-controlling methods face with serious limitation of unavoidable crosstalk, length distortion, and fabrication error. To date, it is still a great challenge to achieve deterministic and wide-range on-chip arbitrary-phase-controlling. Here, we report an effective strategy of three-waveguide coupled configuration to realize on-chip deterministic arbitrary-phase-controlling (ranging from 0 to 2<jats:italic>π</jats:italic>) by combing the dynamic phase and the geometric phase. Based on this strategy, quantum gate operations in an optical permutation-group circuit are successfully realized in femtosecond-laser direct writing sample. To extend the feasibility of this method, on-chip silicon-based deterministic arbitrary-phase-controlling in the optical communication range is also experimentally verified. Our work not only paves the way for fundamental research in chip-scale novel optical devices but also promotes the study of topological quantum computing.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"13 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip deterministic arbitrary-phase-controlling\",\"authors\":\"Rui Ma, Chu Li, Qiuchen Yan, Xinyi Wang, Ruiqi Wang, Yufei Wang, Yumeng Chen, Yan Li, Cuicui Lu, Jianwei Wang, Xiaoyong Hu, Che Ting Chan, Qihuang Gong\",\"doi\":\"10.1515/nanoph-2025-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stable on-chip deterministic arbitrary-phase-controlling of signal light in micro/nanometer spatial scale is an extremely important basis for large-scale and high-density integrated photonic information processing chips. Conventional phase-controlling methods face with serious limitation of unavoidable crosstalk, length distortion, and fabrication error. To date, it is still a great challenge to achieve deterministic and wide-range on-chip arbitrary-phase-controlling. Here, we report an effective strategy of three-waveguide coupled configuration to realize on-chip deterministic arbitrary-phase-controlling (ranging from 0 to 2<jats:italic>π</jats:italic>) by combing the dynamic phase and the geometric phase. Based on this strategy, quantum gate operations in an optical permutation-group circuit are successfully realized in femtosecond-laser direct writing sample. To extend the feasibility of this method, on-chip silicon-based deterministic arbitrary-phase-controlling in the optical communication range is also experimentally verified. Our work not only paves the way for fundamental research in chip-scale novel optical devices but also promotes the study of topological quantum computing.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0132\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0132","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The stable on-chip deterministic arbitrary-phase-controlling of signal light in micro/nanometer spatial scale is an extremely important basis for large-scale and high-density integrated photonic information processing chips. Conventional phase-controlling methods face with serious limitation of unavoidable crosstalk, length distortion, and fabrication error. To date, it is still a great challenge to achieve deterministic and wide-range on-chip arbitrary-phase-controlling. Here, we report an effective strategy of three-waveguide coupled configuration to realize on-chip deterministic arbitrary-phase-controlling (ranging from 0 to 2π) by combing the dynamic phase and the geometric phase. Based on this strategy, quantum gate operations in an optical permutation-group circuit are successfully realized in femtosecond-laser direct writing sample. To extend the feasibility of this method, on-chip silicon-based deterministic arbitrary-phase-controlling in the optical communication range is also experimentally verified. Our work not only paves the way for fundamental research in chip-scale novel optical devices but also promotes the study of topological quantum computing.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.