An-Yi Chang, Muyang Lin, Lu Yin, Maria Reynoso, Shichao Ding, Ruixiao Liu, Yuma Dugas, Ana Casanova, Geonho Park, Zhengxing Li, Hao Luan, Nelly Askarinam, Fangyu Zhang, Sheng Xu, Joseph Wang
{"title":"整合用于监测糖尿病代谢产物和心脏信号的化学和物理输入","authors":"An-Yi Chang, Muyang Lin, Lu Yin, Maria Reynoso, Shichao Ding, Ruixiao Liu, Yuma Dugas, Ana Casanova, Geonho Park, Zhengxing Li, Hao Luan, Nelly Askarinam, Fangyu Zhang, Sheng Xu, Joseph Wang","doi":"10.1038/s41551-025-01439-z","DOIUrl":null,"url":null,"abstract":"<p>The development of closed-loop systems towards effective management of diabetes requires the inclusion of additional chemical and physical inputs that affect disease pathophysiology and reflect cardiovascular risks in patients. Comprehensive glycaemic control information should account for more than a single glucose signal. Here, we describe a hybrid flexible wristband sensing platform that integrates a microneedle array for multiplexed biomarker sensing and an ultrasonic array for blood pressure, arterial stiffness and heart-rate monitoring. The integrated system provides a continuous evaluation of the metabolic and cardiovascular status towards improving glycaemic control and alerting patients to cardiovascular risks. The multimodal platform offers continuous glucose, lactate and alcohol monitoring, along with simultaneous ultrasonic measurements of blood pressure, arterial stiffness and heart rate, to support understanding of the interplay between interstitial fluid biomarkers and physiological parameters during common activities. By expanding the continuous monitoring of patients with diabetes to additional biomarkers and key cardiac signals, our integrated multiplexed chemical–physical health-monitoring platform holds promise for addressing the limitations of existing single-modality glucose-monitoring systems towards enhanced management of diabetes and related cardiovascular risks.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"27 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of chemical and physical inputs for monitoring metabolites and cardiac signals in diabetes\",\"authors\":\"An-Yi Chang, Muyang Lin, Lu Yin, Maria Reynoso, Shichao Ding, Ruixiao Liu, Yuma Dugas, Ana Casanova, Geonho Park, Zhengxing Li, Hao Luan, Nelly Askarinam, Fangyu Zhang, Sheng Xu, Joseph Wang\",\"doi\":\"10.1038/s41551-025-01439-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of closed-loop systems towards effective management of diabetes requires the inclusion of additional chemical and physical inputs that affect disease pathophysiology and reflect cardiovascular risks in patients. Comprehensive glycaemic control information should account for more than a single glucose signal. Here, we describe a hybrid flexible wristband sensing platform that integrates a microneedle array for multiplexed biomarker sensing and an ultrasonic array for blood pressure, arterial stiffness and heart-rate monitoring. The integrated system provides a continuous evaluation of the metabolic and cardiovascular status towards improving glycaemic control and alerting patients to cardiovascular risks. The multimodal platform offers continuous glucose, lactate and alcohol monitoring, along with simultaneous ultrasonic measurements of blood pressure, arterial stiffness and heart rate, to support understanding of the interplay between interstitial fluid biomarkers and physiological parameters during common activities. By expanding the continuous monitoring of patients with diabetes to additional biomarkers and key cardiac signals, our integrated multiplexed chemical–physical health-monitoring platform holds promise for addressing the limitations of existing single-modality glucose-monitoring systems towards enhanced management of diabetes and related cardiovascular risks.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01439-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01439-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Integration of chemical and physical inputs for monitoring metabolites and cardiac signals in diabetes
The development of closed-loop systems towards effective management of diabetes requires the inclusion of additional chemical and physical inputs that affect disease pathophysiology and reflect cardiovascular risks in patients. Comprehensive glycaemic control information should account for more than a single glucose signal. Here, we describe a hybrid flexible wristband sensing platform that integrates a microneedle array for multiplexed biomarker sensing and an ultrasonic array for blood pressure, arterial stiffness and heart-rate monitoring. The integrated system provides a continuous evaluation of the metabolic and cardiovascular status towards improving glycaemic control and alerting patients to cardiovascular risks. The multimodal platform offers continuous glucose, lactate and alcohol monitoring, along with simultaneous ultrasonic measurements of blood pressure, arterial stiffness and heart rate, to support understanding of the interplay between interstitial fluid biomarkers and physiological parameters during common activities. By expanding the continuous monitoring of patients with diabetes to additional biomarkers and key cardiac signals, our integrated multiplexed chemical–physical health-monitoring platform holds promise for addressing the limitations of existing single-modality glucose-monitoring systems towards enhanced management of diabetes and related cardiovascular risks.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.