Yi Tan, Xiaokang Chen, Jian Yuan, Guan Sheng, Dr. Wei-Qiao Deng, Dr. Hao Wu
{"title":"基于卟啉和金属卟啉mof的CO2和硝酸盐浓度适应性电催化合成尿素","authors":"Yi Tan, Xiaokang Chen, Jian Yuan, Guan Sheng, Dr. Wei-Qiao Deng, Dr. Hao Wu","doi":"10.1002/anie.202513441","DOIUrl":null,"url":null,"abstract":"<p>Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO<sub>3</sub><sup>−</sup> concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO<sub>3</sub><sup>−</sup> concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO<sub>2</sub> via hydrogen bonding, favoring its coupling with *CO<sub>2</sub>, while Cu-PMOF strongly binds *NO<sub>2</sub> at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO<sub>3</sub><sup>−</sup> conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO<sub>3</sub><sup>−</sup>, whereas Cu-PMOF outperforms in 0.05 M NO<sub>3</sub><sup>−</sup> with a yield of 25.5 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO<sub>2</sub> with *CO<sub>2</sub>, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 35","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration-Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs\",\"authors\":\"Yi Tan, Xiaokang Chen, Jian Yuan, Guan Sheng, Dr. Wei-Qiao Deng, Dr. Hao Wu\",\"doi\":\"10.1002/anie.202513441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO<sub>3</sub><sup>−</sup> concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO<sub>3</sub><sup>−</sup> concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO<sub>2</sub> via hydrogen bonding, favoring its coupling with *CO<sub>2</sub>, while Cu-PMOF strongly binds *NO<sub>2</sub> at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO<sub>3</sub><sup>−</sup> conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO<sub>3</sub><sup>−</sup>, whereas Cu-PMOF outperforms in 0.05 M NO<sub>3</sub><sup>−</sup> with a yield of 25.5 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO<sub>2</sub> with *CO<sub>2</sub>, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 35\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202513441\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202513441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
传统的博世-迈泽尿素合成工艺存在高能耗和温室气体排放的问题。在环境条件下,由二氧化碳和硝酸盐(NO3‐)电催化生产尿素提供了一种可持续的替代方案,但由于NO3‐浓度的变化和相互竞争的副反应,挑战仍然存在。在此,我们提出了卟啉金属有机骨架(PMOF)和Cu -卟啉金属有机骨架(Cu - PMOF)催化剂用于NO3浓度适应性尿素合成。密度泛函理论(DFT)计算表明,PMOF通过氢键弱吸附*NO2,有利于其与*CO2的偶联,而Cu‐PMOF在Cu位点强结合*NO2,促进在稀释NO3‐条件下自发的*NO/*CO偶联形成*OCNO中间体。实验结果表明,PMOF在0.1 M NO3‐条件下的尿素产率为28.6 μmol h‐1 mgcat‐1,法拉第效率(FE)为23.1%,而Cu‐PMOF在0.05 M NO3‐条件下的效率为25.5 μmol h‐1 mgcat‐1,FE为52.7%。原位光谱和机理研究证实了不同的途径:PMOF依赖于*HNO2与*CO2的逐步耦合,而Cu - PMOF使*NO - *CO连续耦合。这项工作强调了高效C - N偶联的自适应电催化剂设计,促进了可持续尿素合成。
Concentration-Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs
Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO3− concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu-PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu-PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.