基于卟啉和金属卟啉mof的CO2和硝酸盐浓度适应性电催化合成尿素

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi Tan, Xiaokang Chen, Jian Yuan, Guan Sheng, Dr. Wei-Qiao Deng, Dr. Hao Wu
{"title":"基于卟啉和金属卟啉mof的CO2和硝酸盐浓度适应性电催化合成尿素","authors":"Yi Tan,&nbsp;Xiaokang Chen,&nbsp;Jian Yuan,&nbsp;Guan Sheng,&nbsp;Dr. Wei-Qiao Deng,&nbsp;Dr. Hao Wu","doi":"10.1002/anie.202513441","DOIUrl":null,"url":null,"abstract":"<p>Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO<sub>3</sub><sup>−</sup> concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO<sub>3</sub><sup>−</sup> concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO<sub>2</sub> via hydrogen bonding, favoring its coupling with *CO<sub>2</sub>, while Cu-PMOF strongly binds *NO<sub>2</sub> at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO<sub>3</sub><sup>−</sup> conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO<sub>3</sub><sup>−</sup>, whereas Cu-PMOF outperforms in 0.05 M NO<sub>3</sub><sup>−</sup> with a yield of 25.5 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO<sub>2</sub> with *CO<sub>2</sub>, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 35","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration-Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs\",\"authors\":\"Yi Tan,&nbsp;Xiaokang Chen,&nbsp;Jian Yuan,&nbsp;Guan Sheng,&nbsp;Dr. Wei-Qiao Deng,&nbsp;Dr. Hao Wu\",\"doi\":\"10.1002/anie.202513441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO<sub>3</sub><sup>−</sup> concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO<sub>3</sub><sup>−</sup> concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO<sub>2</sub> via hydrogen bonding, favoring its coupling with *CO<sub>2</sub>, while Cu-PMOF strongly binds *NO<sub>2</sub> at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO<sub>3</sub><sup>−</sup> conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO<sub>3</sub><sup>−</sup>, whereas Cu-PMOF outperforms in 0.05 M NO<sub>3</sub><sup>−</sup> with a yield of 25.5 µmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO<sub>2</sub> with *CO<sub>2</sub>, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 35\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202513441\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202513441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的博世-迈泽尿素合成工艺存在高能耗和温室气体排放的问题。在环境条件下,由二氧化碳和硝酸盐(NO3‐)电催化生产尿素提供了一种可持续的替代方案,但由于NO3‐浓度的变化和相互竞争的副反应,挑战仍然存在。在此,我们提出了卟啉金属有机骨架(PMOF)和Cu -卟啉金属有机骨架(Cu - PMOF)催化剂用于NO3浓度适应性尿素合成。密度泛函理论(DFT)计算表明,PMOF通过氢键弱吸附*NO2,有利于其与*CO2的偶联,而Cu‐PMOF在Cu位点强结合*NO2,促进在稀释NO3‐条件下自发的*NO/*CO偶联形成*OCNO中间体。实验结果表明,PMOF在0.1 M NO3‐条件下的尿素产率为28.6 μmol h‐1 mgcat‐1,法拉第效率(FE)为23.1%,而Cu‐PMOF在0.05 M NO3‐条件下的效率为25.5 μmol h‐1 mgcat‐1,FE为52.7%。原位光谱和机理研究证实了不同的途径:PMOF依赖于*HNO2与*CO2的逐步耦合,而Cu - PMOF使*NO - *CO连续耦合。这项工作强调了高效C - N偶联的自适应电催化剂设计,促进了可持续尿素合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Concentration-Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs

Concentration-Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs

Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3 concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO3 concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu-PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3 conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3, whereas Cu-PMOF outperforms in 0.05 M NO3 with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信