类肿瘤模型重现了高级别浆液性卵巢癌(HGSC)细胞、癌相关成纤维细胞和巨噬细胞的临床相关表型。

Kathleen M Burkhard, Ayush Semwal, Benjamin K Johnson, Kristina C Chu, Riley J Kranick, Mihika Rayan, Analisa DiFeo, Hui Shen, Geeta Mehta
{"title":"类肿瘤模型重现了高级别浆液性卵巢癌(HGSC)细胞、癌相关成纤维细胞和巨噬细胞的临床相关表型。","authors":"Kathleen M Burkhard, Ayush Semwal, Benjamin K Johnson, Kristina C Chu, Riley J Kranick, Mihika Rayan, Analisa DiFeo, Hui Shen, Geeta Mehta","doi":"10.21203/rs.3.rs-6614892/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer, the gynecological malignancy with the lowest survival rate, is significantly influenced by the tumor microenvironment. The mesenchymal subtype of high-grade serous carcinoma (HGSC) shows poor outcomes due to high stromal and low immune response. Single-cell RNA sequencing (scRNA-seq) of HGSC metastatic ascites has identified carcinoma-associated fibroblasts (CAFs), macrophages, and carcinoma-associated mesenchymal stem cells (CA-MSCs) as crucial drivers of immune exclusion, chemotherapy resistance, metastasis, and stem-like cell propagation. To explore this complex signaling, we developed heterogeneous tri-component tumoroids, incorporating HGSC cells (OVCAR3, OVCAR4, OVCAR8), primary MSCs, and U937-derived M2-like macrophages (M2-AAM) in defined ratios, each labeled with a fluorescent protein for distinct analysis. Upon a 48-hour treatment with carboplatin and/or paclitaxel, HGSC cells in tri-component tumoroids exhibited higher chemoresistance than HGSC-only spheroids. Flow cytometry revealed significant increases in cancer stem-like cell (CSC) markers CD44 and CD90 in the tri-component tumoroids. Conditioned medium from the tri-component tumoroids significantly enhanced HGSC cell migration compared to spheroids. Invasion assays further demonstrated that tri-component tumoroids penetrated monolayer of mCherry-labeled LP-9 mesothelial cells more effectively than spheroids. Additionally, scRNA-seq of tri-component tumoroids identified a unique cancer cell cluster enriched in epithelial-mesenchymal transition (EMT) and matrisome signatures, featuring a 14-gene signature linked to poor survival. MSCs in these tri-component tumoroids displayed a myofibroblastic-CAF signature, while macrophages indicated an ECM-associated and immunosuppressive phenotype. In conclusion, our 3D heterogenous tri-component tumoroids replicate key HGSC phenotypes, such as chemoresistance, CSC enrichment, migration, invasion, and EMT. This platform is invaluable for studying HGSC microenvironment interactions and preclinical testing of targeted therapies.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumoroid model recreates clinically relevant phenotypes of high grade serous ovarian cancer (HGSC) cells, carcinoma associated fibroblasts, and macrophages.\",\"authors\":\"Kathleen M Burkhard, Ayush Semwal, Benjamin K Johnson, Kristina C Chu, Riley J Kranick, Mihika Rayan, Analisa DiFeo, Hui Shen, Geeta Mehta\",\"doi\":\"10.21203/rs.3.rs-6614892/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian cancer, the gynecological malignancy with the lowest survival rate, is significantly influenced by the tumor microenvironment. The mesenchymal subtype of high-grade serous carcinoma (HGSC) shows poor outcomes due to high stromal and low immune response. Single-cell RNA sequencing (scRNA-seq) of HGSC metastatic ascites has identified carcinoma-associated fibroblasts (CAFs), macrophages, and carcinoma-associated mesenchymal stem cells (CA-MSCs) as crucial drivers of immune exclusion, chemotherapy resistance, metastasis, and stem-like cell propagation. To explore this complex signaling, we developed heterogeneous tri-component tumoroids, incorporating HGSC cells (OVCAR3, OVCAR4, OVCAR8), primary MSCs, and U937-derived M2-like macrophages (M2-AAM) in defined ratios, each labeled with a fluorescent protein for distinct analysis. Upon a 48-hour treatment with carboplatin and/or paclitaxel, HGSC cells in tri-component tumoroids exhibited higher chemoresistance than HGSC-only spheroids. Flow cytometry revealed significant increases in cancer stem-like cell (CSC) markers CD44 and CD90 in the tri-component tumoroids. Conditioned medium from the tri-component tumoroids significantly enhanced HGSC cell migration compared to spheroids. Invasion assays further demonstrated that tri-component tumoroids penetrated monolayer of mCherry-labeled LP-9 mesothelial cells more effectively than spheroids. Additionally, scRNA-seq of tri-component tumoroids identified a unique cancer cell cluster enriched in epithelial-mesenchymal transition (EMT) and matrisome signatures, featuring a 14-gene signature linked to poor survival. MSCs in these tri-component tumoroids displayed a myofibroblastic-CAF signature, while macrophages indicated an ECM-associated and immunosuppressive phenotype. In conclusion, our 3D heterogenous tri-component tumoroids replicate key HGSC phenotypes, such as chemoresistance, CSC enrichment, migration, invasion, and EMT. This platform is invaluable for studying HGSC microenvironment interactions and preclinical testing of targeted therapies.</p>\",\"PeriodicalId\":519972,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-6614892/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6614892/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卵巢癌是妇科恶性肿瘤中生存率最低的一种,肿瘤微环境对其影响显著。高级别浆液性癌(HGSC)的间充质亚型由于高间质和低免疫应答而表现出较差的预后。HGSC转移性腹水的单细胞RNA测序(scRNA-seq)鉴定出癌相关成纤维细胞(CAFs)、巨噬细胞和癌相关间充质干细胞(CA-MSCs)是免疫排斥、化疗耐药、转移和干细胞样细胞繁殖的关键驱动因素。为了探索这种复杂的信号传导,我们开发了异质三组分类肿瘤,将HGSC细胞(OVCAR3、OVCAR4、OVCAR8)、原代间充质干细胞和u937衍生的m2样巨噬细胞(M2-AAM)按规定的比例结合在一起,每个细胞都用荧光蛋白标记以进行不同的分析。在卡铂和/或紫杉醇治疗48小时后,三组分类肿瘤中的HGSC细胞比只有HGSC的球状肿瘤表现出更高的化疗耐药。流式细胞术显示三组分类肿瘤中肿瘤干细胞样细胞(CSC)标志物CD44和CD90显著升高。与球状肿瘤相比,来自三组分类肿瘤的条件培养基显著增强了HGSC细胞的迁移。侵袭实验进一步表明,三组分类肿瘤比球状肿瘤更有效地渗透单层mccherry标记的LP-9间皮细胞。此外,三组分类肿瘤的scRNA-seq鉴定出一种独特的癌细胞簇,富含上皮-间质转化(EMT)和基质特征,具有14个与生存率低相关的基因特征。这些三组分类肿瘤中的间充质干细胞显示出肌成纤维细胞- caf特征,而巨噬细胞显示出与ecm相关的免疫抑制表型。总之,我们的3D异质三组分类肿瘤复制关键的HGSC表型,如化疗耐药、CSC富集、迁移、侵袭和EMT。该平台对于研究HGSC微环境相互作用和靶向治疗的临床前测试具有不可估量的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tumoroid model recreates clinically relevant phenotypes of high grade serous ovarian cancer (HGSC) cells, carcinoma associated fibroblasts, and macrophages.

Ovarian cancer, the gynecological malignancy with the lowest survival rate, is significantly influenced by the tumor microenvironment. The mesenchymal subtype of high-grade serous carcinoma (HGSC) shows poor outcomes due to high stromal and low immune response. Single-cell RNA sequencing (scRNA-seq) of HGSC metastatic ascites has identified carcinoma-associated fibroblasts (CAFs), macrophages, and carcinoma-associated mesenchymal stem cells (CA-MSCs) as crucial drivers of immune exclusion, chemotherapy resistance, metastasis, and stem-like cell propagation. To explore this complex signaling, we developed heterogeneous tri-component tumoroids, incorporating HGSC cells (OVCAR3, OVCAR4, OVCAR8), primary MSCs, and U937-derived M2-like macrophages (M2-AAM) in defined ratios, each labeled with a fluorescent protein for distinct analysis. Upon a 48-hour treatment with carboplatin and/or paclitaxel, HGSC cells in tri-component tumoroids exhibited higher chemoresistance than HGSC-only spheroids. Flow cytometry revealed significant increases in cancer stem-like cell (CSC) markers CD44 and CD90 in the tri-component tumoroids. Conditioned medium from the tri-component tumoroids significantly enhanced HGSC cell migration compared to spheroids. Invasion assays further demonstrated that tri-component tumoroids penetrated monolayer of mCherry-labeled LP-9 mesothelial cells more effectively than spheroids. Additionally, scRNA-seq of tri-component tumoroids identified a unique cancer cell cluster enriched in epithelial-mesenchymal transition (EMT) and matrisome signatures, featuring a 14-gene signature linked to poor survival. MSCs in these tri-component tumoroids displayed a myofibroblastic-CAF signature, while macrophages indicated an ECM-associated and immunosuppressive phenotype. In conclusion, our 3D heterogenous tri-component tumoroids replicate key HGSC phenotypes, such as chemoresistance, CSC enrichment, migration, invasion, and EMT. This platform is invaluable for studying HGSC microenvironment interactions and preclinical testing of targeted therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信