前瞻性MoBa出生队列中精神病的多模态预测。

Viktoria Birkenæs, Pravesh Parekh, Alexey Shadrin, Piotr Jaholkowski, Lars A R Ystaas, Carolina Makowski, Nora R Bakken, Espen Hagen, Evgeniia Frei, Dominic Oliver, Paolo Fusar-Poli, Anders Dale, John P John, Alexandra Havdahl, Ida E Sønderby, Ole A Andreassen
{"title":"前瞻性MoBa出生队列中精神病的多模态预测。","authors":"Viktoria Birkenæs, Pravesh Parekh, Alexey Shadrin, Piotr Jaholkowski, Lars A R Ystaas, Carolina Makowski, Nora R Bakken, Espen Hagen, Evgeniia Frei, Dominic Oliver, Paolo Fusar-Poli, Anders Dale, John P John, Alexandra Havdahl, Ida E Sønderby, Ole A Andreassen","doi":"10.21203/rs.3.rs-6783339/v1","DOIUrl":null,"url":null,"abstract":"<p><p>There is a need for improved early psychosis detection beyond the traditional clinical high-risk strategy. Using the Norwegian Mother, Father and Child cohort study, we examined the predictive ability of self-reported psychotic experiences (Community Assessment of Psychic Experiences; CAPE) at age 14, in addition to general mental health factors, parent and childhood psychiatric diagnoses, schizophrenia polygenic risk scores, and birth-related factors, to predict subsequent psychosis onset using three machine learning approaches for imbalanced data. We explored also a multimodal prediction framework. For unimodal classification, we observed best balanced accuracies with general mental health factors (67.27 ± 1.76%), and CAPE (65.95 ± 1.09%). Multimodal models improved classification accuracy (68.38 ± 2.16%). With validation and additional model refinement, these features may be useful for initial screening within clinical stepped assessment frameworks.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal Prediction of Psychosis in the Prospective MoBa Birth Cohort.\",\"authors\":\"Viktoria Birkenæs, Pravesh Parekh, Alexey Shadrin, Piotr Jaholkowski, Lars A R Ystaas, Carolina Makowski, Nora R Bakken, Espen Hagen, Evgeniia Frei, Dominic Oliver, Paolo Fusar-Poli, Anders Dale, John P John, Alexandra Havdahl, Ida E Sønderby, Ole A Andreassen\",\"doi\":\"10.21203/rs.3.rs-6783339/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a need for improved early psychosis detection beyond the traditional clinical high-risk strategy. Using the Norwegian Mother, Father and Child cohort study, we examined the predictive ability of self-reported psychotic experiences (Community Assessment of Psychic Experiences; CAPE) at age 14, in addition to general mental health factors, parent and childhood psychiatric diagnoses, schizophrenia polygenic risk scores, and birth-related factors, to predict subsequent psychosis onset using three machine learning approaches for imbalanced data. We explored also a multimodal prediction framework. For unimodal classification, we observed best balanced accuracies with general mental health factors (67.27 ± 1.76%), and CAPE (65.95 ± 1.09%). Multimodal models improved classification accuracy (68.38 ± 2.16%). With validation and additional model refinement, these features may be useful for initial screening within clinical stepped assessment frameworks.</p>\",\"PeriodicalId\":519972,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-6783339/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6783339/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了传统的临床高危策略外,还需要改进早期精神病检测。利用挪威母亲、父亲和儿童队列研究,我们检验了自我报告的精神病经历的预测能力(精神体验社区评估;CAPE),除了一般心理健康因素、父母和儿童精神病学诊断、精神分裂症多基因风险评分和出生相关因素外,还使用三种机器学习方法来预测随后的精神病发作,用于不平衡数据。我们还探索了一个多模态预测框架。对于单峰分类,我们观察到与一般心理健康因素(67.27±1.76%)和CAPE(65.95±1.09%)的最佳平衡准确性。多模态模型提高了分类准确率(68.38±2.16%)。通过验证和额外的模型改进,这些特征可能对临床分级评估框架中的初始筛选有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Prediction of Psychosis in the Prospective MoBa Birth Cohort.

There is a need for improved early psychosis detection beyond the traditional clinical high-risk strategy. Using the Norwegian Mother, Father and Child cohort study, we examined the predictive ability of self-reported psychotic experiences (Community Assessment of Psychic Experiences; CAPE) at age 14, in addition to general mental health factors, parent and childhood psychiatric diagnoses, schizophrenia polygenic risk scores, and birth-related factors, to predict subsequent psychosis onset using three machine learning approaches for imbalanced data. We explored also a multimodal prediction framework. For unimodal classification, we observed best balanced accuracies with general mental health factors (67.27 ± 1.76%), and CAPE (65.95 ± 1.09%). Multimodal models improved classification accuracy (68.38 ± 2.16%). With validation and additional model refinement, these features may be useful for initial screening within clinical stepped assessment frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信