细胞穿透干扰物对磷酸化依赖相互作用的机理设计。

Vanda Gunning, Matthew Batchelor, Krista K Alexander, Martin Walko, Selena G Burgess, Stephen J Royle, Eileen J Kennedy, Richard Bayliss
{"title":"细胞穿透干扰物对磷酸化依赖相互作用的机理设计。","authors":"Vanda Gunning, Matthew Batchelor, Krista K Alexander, Martin Walko, Selena G Burgess, Stephen J Royle, Eileen J Kennedy, Richard Bayliss","doi":"10.21203/rs.3.rs-6862805/v1","DOIUrl":null,"url":null,"abstract":"<p><p>The complex formed by transforming acidic coiled coil 3 (TACC3) and clathrin heavy chain (CHC) enhances mitotic spindle stability and strength by cross-linking microtubules. The interaction is dependent on phosphorylation of TACC3 at S558 by Aurora-A. Previously, we elucidated the structural basis of the TACC3/CHC interaction, which is driven by hydrophobic residues on both proteins and the formation of an α-helix in TACC3 that docks into the helical repeats of CHC. Here we find that this phosphorylation event plays an unusual role in the protein-protein interaction; rather than direct bond formation, the phosphorylated residue acts by overcoming an inherent electrostatic repulsion between K507 of CHC and basic residues in TACC3. Leveraging this insight, we optimized the sequence using peptide arrays to develop a hydrocarbon-stapled peptide (SP TACC3) that binds CHC with over a hundred-fold higher affinity than the parental TACC3 peptide, effectively disrupting the native interaction. The crystal structure of the SP TACC3/CHC complex reveals the basis for the enhanced interaction and highlights the contribution of additional polar and hydrophobic interactions. SP TACC3 efficiently penetrates cells and displaces TACC3 from the mitotic spindle, causing a delay in mitotic progression in two out of three cancer cell lines. This work showcases the novel application of hydrocarbon-stapled peptides to disrupt the TACC3/CHC protein-protein interaction in a cellular context, highlighting the potential of targeting this interface for future cancer therapies.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Design of Cell-Penetrating Disruptors for a Phospho-Dependent Interaction.\",\"authors\":\"Vanda Gunning, Matthew Batchelor, Krista K Alexander, Martin Walko, Selena G Burgess, Stephen J Royle, Eileen J Kennedy, Richard Bayliss\",\"doi\":\"10.21203/rs.3.rs-6862805/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complex formed by transforming acidic coiled coil 3 (TACC3) and clathrin heavy chain (CHC) enhances mitotic spindle stability and strength by cross-linking microtubules. The interaction is dependent on phosphorylation of TACC3 at S558 by Aurora-A. Previously, we elucidated the structural basis of the TACC3/CHC interaction, which is driven by hydrophobic residues on both proteins and the formation of an α-helix in TACC3 that docks into the helical repeats of CHC. Here we find that this phosphorylation event plays an unusual role in the protein-protein interaction; rather than direct bond formation, the phosphorylated residue acts by overcoming an inherent electrostatic repulsion between K507 of CHC and basic residues in TACC3. Leveraging this insight, we optimized the sequence using peptide arrays to develop a hydrocarbon-stapled peptide (SP TACC3) that binds CHC with over a hundred-fold higher affinity than the parental TACC3 peptide, effectively disrupting the native interaction. The crystal structure of the SP TACC3/CHC complex reveals the basis for the enhanced interaction and highlights the contribution of additional polar and hydrophobic interactions. SP TACC3 efficiently penetrates cells and displaces TACC3 from the mitotic spindle, causing a delay in mitotic progression in two out of three cancer cell lines. This work showcases the novel application of hydrocarbon-stapled peptides to disrupt the TACC3/CHC protein-protein interaction in a cellular context, highlighting the potential of targeting this interface for future cancer therapies.</p>\",\"PeriodicalId\":519972,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-6862805/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6862805/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由酸性卷曲线圈3 (TACC3)和网格蛋白重链(CHC)转化形成的复合物通过交联微管增强有丝分裂纺锤体的稳定性和强度。这种相互作用依赖于极光a对TACC3在S558位点的磷酸化。之前,我们阐明了TACC3/CHC相互作用的结构基础,这是由两种蛋白质上的疏水残基和TACC3中α-螺旋的形成驱动的,该α-螺旋与CHC的螺旋重复序列对接。在这里,我们发现这种磷酸化事件在蛋白质-蛋白质相互作用中起着不寻常的作用;磷酸化残基不是直接成键,而是通过克服CHC的K507和TACC3中的碱性残基之间固有的静电斥力来起作用。利用这一见解,我们利用肽阵列优化了序列,开发了一种碳氢钉接肽(SP TACC3),它与CHC的亲和力比亲本TACC3肽高100倍以上,有效地破坏了天然相互作用。SP TACC3/CHC配合物的晶体结构揭示了相互作用增强的基础,并强调了额外的极性和疏水相互作用的贡献。SP TACC3有效地穿透细胞并将TACC3从有丝分裂纺锤体中移出,导致三分之二的癌细胞系有丝分裂进程延迟。这项工作展示了碳氢化合物钉接肽在细胞环境中破坏TACC3/CHC蛋白-蛋白质相互作用的新应用,突出了靶向该界面在未来癌症治疗中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Design of Cell-Penetrating Disruptors for a Phospho-Dependent Interaction.

The complex formed by transforming acidic coiled coil 3 (TACC3) and clathrin heavy chain (CHC) enhances mitotic spindle stability and strength by cross-linking microtubules. The interaction is dependent on phosphorylation of TACC3 at S558 by Aurora-A. Previously, we elucidated the structural basis of the TACC3/CHC interaction, which is driven by hydrophobic residues on both proteins and the formation of an α-helix in TACC3 that docks into the helical repeats of CHC. Here we find that this phosphorylation event plays an unusual role in the protein-protein interaction; rather than direct bond formation, the phosphorylated residue acts by overcoming an inherent electrostatic repulsion between K507 of CHC and basic residues in TACC3. Leveraging this insight, we optimized the sequence using peptide arrays to develop a hydrocarbon-stapled peptide (SP TACC3) that binds CHC with over a hundred-fold higher affinity than the parental TACC3 peptide, effectively disrupting the native interaction. The crystal structure of the SP TACC3/CHC complex reveals the basis for the enhanced interaction and highlights the contribution of additional polar and hydrophobic interactions. SP TACC3 efficiently penetrates cells and displaces TACC3 from the mitotic spindle, causing a delay in mitotic progression in two out of three cancer cell lines. This work showcases the novel application of hydrocarbon-stapled peptides to disrupt the TACC3/CHC protein-protein interaction in a cellular context, highlighting the potential of targeting this interface for future cancer therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信