回到未来:预测阿尔茨海默病的个体Tau进展。

Robin Sandell, Justin Torok, Kamalini G Ranasinghe, Srikantan S Nagarajan, Ashish Raj
{"title":"回到未来:预测阿尔茨海默病的个体Tau进展。","authors":"Robin Sandell, Justin Torok, Kamalini G Ranasinghe, Srikantan S Nagarajan, Ashish Raj","doi":"10.21203/rs.3.rs-6772220/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is characterized by the spread of tau neurofibrillary tangles along the brain's structural network. The marked variability in pathology spread patterns across individuals necessitates a precision medicine approach. Here we introduce Stage-based Network Diffusion (StaND), a novel algorithm that combines statistical staging with biophysical modeling to predict patient-specific tau progression. Using data from 650 subjects in the Alzheimer's Disease Neuroimaging Initiative, StaND first estimates each subject's disease stage and then infers their individual tau seeding pattern, agglomeration rate, and transmission rate. The model is applied forward in time to predict regional tau distributions cross-sectionally and longitudinally. StaND outperforms benchmark models in both instances. Inferred tau seed patterns capture spatial heterogeneity, while rate parameters explain temporal and cognitive variability. Despite diverse initial seeding patterns, tau distributions converge across subjects over time. We also identify two distinct tau seeding archetypes with distinct clinical and demographic profiles. StaND offers a powerful new approach for understanding and forecasting the spatiotemporal dynamics of AD and is widely applicable to other neurodegenerative diseases.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204357/pdf/","citationCount":"0","resultStr":"{\"title\":\"Back to the Future: Predicting Individual Tau Progression in Alzheimer's Disease.\",\"authors\":\"Robin Sandell, Justin Torok, Kamalini G Ranasinghe, Srikantan S Nagarajan, Ashish Raj\",\"doi\":\"10.21203/rs.3.rs-6772220/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's Disease (AD) is characterized by the spread of tau neurofibrillary tangles along the brain's structural network. The marked variability in pathology spread patterns across individuals necessitates a precision medicine approach. Here we introduce Stage-based Network Diffusion (StaND), a novel algorithm that combines statistical staging with biophysical modeling to predict patient-specific tau progression. Using data from 650 subjects in the Alzheimer's Disease Neuroimaging Initiative, StaND first estimates each subject's disease stage and then infers their individual tau seeding pattern, agglomeration rate, and transmission rate. The model is applied forward in time to predict regional tau distributions cross-sectionally and longitudinally. StaND outperforms benchmark models in both instances. Inferred tau seed patterns capture spatial heterogeneity, while rate parameters explain temporal and cognitive variability. Despite diverse initial seeding patterns, tau distributions converge across subjects over time. We also identify two distinct tau seeding archetypes with distinct clinical and demographic profiles. StaND offers a powerful new approach for understanding and forecasting the spatiotemporal dynamics of AD and is widely applicable to other neurodegenerative diseases.</p>\",\"PeriodicalId\":519972,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204357/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-6772220/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6772220/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的特点是tau神经原纤维缠结沿大脑结构网络扩散。个体间病理传播模式的显著可变性需要一种精确的医学方法。在这里,我们介绍了基于阶段的网络扩散(StaND),这是一种结合统计分期和生物物理建模来预测患者特异性tau进展的新算法。利用来自650名阿尔茨海默病神经成像计划受试者的数据,StaND首先估计每个受试者的疾病阶段,然后推断他们个人的tau种子模式、聚集率和传播率。将该模型及时正演应用于横断面和纵向预测区域tau分布。StaND在这两种情况下都优于基准模型。推断的tau种子模式捕获空间异质性,而速率参数解释时间和认知变异。尽管最初的播种模式不同,但随着时间的推移,tau分布在受试者之间趋于一致。我们还确定了两种不同的tau种子原型,具有不同的临床和人口统计学特征。StaND为理解和预测AD的时空动态提供了一种强有力的新方法,并广泛适用于其他神经退行性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Back to the Future: Predicting Individual Tau Progression in Alzheimer's Disease.

Alzheimer's Disease (AD) is characterized by the spread of tau neurofibrillary tangles along the brain's structural network. The marked variability in pathology spread patterns across individuals necessitates a precision medicine approach. Here we introduce Stage-based Network Diffusion (StaND), a novel algorithm that combines statistical staging with biophysical modeling to predict patient-specific tau progression. Using data from 650 subjects in the Alzheimer's Disease Neuroimaging Initiative, StaND first estimates each subject's disease stage and then infers their individual tau seeding pattern, agglomeration rate, and transmission rate. The model is applied forward in time to predict regional tau distributions cross-sectionally and longitudinally. StaND outperforms benchmark models in both instances. Inferred tau seed patterns capture spatial heterogeneity, while rate parameters explain temporal and cognitive variability. Despite diverse initial seeding patterns, tau distributions converge across subjects over time. We also identify two distinct tau seeding archetypes with distinct clinical and demographic profiles. StaND offers a powerful new approach for understanding and forecasting the spatiotemporal dynamics of AD and is widely applicable to other neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信