ASET:用于定量和可视化等位基因特异性表达的端到端管道。

Weisheng Wu, Kerby Shedden, Claudius Vincenz, Chris Gates, Beverly Strassmann
{"title":"ASET:用于定量和可视化等位基因特异性表达的端到端管道。","authors":"Weisheng Wu, Kerby Shedden, Claudius Vincenz, Chris Gates, Beverly Strassmann","doi":"10.21203/rs.3.rs-6844336/v1","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Allele-specific expression (ASE) analyses from RNA-Seq data provide quantitative insights into imprinting and genetic variants affecting transcription. Robust ASE analysis requires the integration of multiple computational steps, including read alignment, read counting, data visualization, and statistical testing-this complexity creates challenges around reproducibility, scalability, and ease of use.</p><p><strong>Results: </strong>Here, we present ASE Toolkit (ASET), an end-to-end pipeline that streamlines SNP-level ASE data generation, visualization, and testing for parent-of-origin (PofO) effect. ASET includes a modular pipeline built with Nextflow for ASE quantification from short-read transcriptome sequencing reads, an R library for data visualization, and a Julia script for PofO testing. ASET performs comprehensive read quality control, SNP-tolerant alignment to reference genomes, read counting with allele and strand resolution, annotation with genes and exons, and estimation of contamination. In sum, ASET provides a complete and easy-to-use solution for molecular and biomedical scientists to identify and interpret patterns in ASE from RNA-Seq data.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204500/pdf/","citationCount":"0","resultStr":"{\"title\":\"ASET: An end-to-end pipeline for quantification and visualization of allele specific expression.\",\"authors\":\"Weisheng Wu, Kerby Shedden, Claudius Vincenz, Chris Gates, Beverly Strassmann\",\"doi\":\"10.21203/rs.3.rs-6844336/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Allele-specific expression (ASE) analyses from RNA-Seq data provide quantitative insights into imprinting and genetic variants affecting transcription. Robust ASE analysis requires the integration of multiple computational steps, including read alignment, read counting, data visualization, and statistical testing-this complexity creates challenges around reproducibility, scalability, and ease of use.</p><p><strong>Results: </strong>Here, we present ASE Toolkit (ASET), an end-to-end pipeline that streamlines SNP-level ASE data generation, visualization, and testing for parent-of-origin (PofO) effect. ASET includes a modular pipeline built with Nextflow for ASE quantification from short-read transcriptome sequencing reads, an R library for data visualization, and a Julia script for PofO testing. ASET performs comprehensive read quality control, SNP-tolerant alignment to reference genomes, read counting with allele and strand resolution, annotation with genes and exons, and estimation of contamination. In sum, ASET provides a complete and easy-to-use solution for molecular and biomedical scientists to identify and interpret patterns in ASE from RNA-Seq data.</p>\",\"PeriodicalId\":519972,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-6844336/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6844336/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自RNA-Seq数据的动机等位基因特异性表达(ASE)分析为印迹和影响转录的遗传变异提供了定量见解。健壮的ASE分析需要集成多个计算步骤,包括读取对齐、读取计数、数据可视化和统计测试——这种复杂性给再现性、可伸缩性和易用性带来了挑战。在这里,我们提出了ASE工具包(ASET),这是一个端到端的管道,可以简化snp级ASE数据的生成、可视化和原生父(PofO)效应的测试。ASET包括一个用Nextflow构建的模块化管道,用于从短读转录组测序读取ASE定量,一个R库用于数据可视化,以及一个用于PofO测试的Julia脚本。ASET执行全面的读段质量控制,对参考基因组进行耐snp比对,用等位基因和链分辨率进行读段计数,用基因和外显子进行注释,以及估计污染。总之,ASET为分子和生物医学科学家从RNA-Seq数据中识别和解释ASE模式提供了一个完整且易于使用的解决方案。可用性ASET可在https://github.com/weishwu/ASET上获得。ASE数据准备部分在Nextflow中使用DSL2语法实现。数据可视化功能作为R库提供,可直接从ASET存储库或https://github.com/weishwu/ASEplot获得。PofO测试算法是在Julia脚本中实现的。ASET和ASEplot也可以作为docker容器从docker Hub:和https://hub.docker.com/repository/docker/weishwu/aseplot访问。联系weishwu@umich.edu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASET: An end-to-end pipeline for quantification and visualization of allele specific expression.

Motivation: Allele-specific expression (ASE) analyses from RNA-Seq data provide quantitative insights into imprinting and genetic variants affecting transcription. Robust ASE analysis requires the integration of multiple computational steps, including read alignment, read counting, data visualization, and statistical testing-this complexity creates challenges around reproducibility, scalability, and ease of use.

Results: Here, we present ASE Toolkit (ASET), an end-to-end pipeline that streamlines SNP-level ASE data generation, visualization, and testing for parent-of-origin (PofO) effect. ASET includes a modular pipeline built with Nextflow for ASE quantification from short-read transcriptome sequencing reads, an R library for data visualization, and a Julia script for PofO testing. ASET performs comprehensive read quality control, SNP-tolerant alignment to reference genomes, read counting with allele and strand resolution, annotation with genes and exons, and estimation of contamination. In sum, ASET provides a complete and easy-to-use solution for molecular and biomedical scientists to identify and interpret patterns in ASE from RNA-Seq data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信