从临床叙述中提取定量吸烟史以改善肺癌筛查的基于bert的模型。

Yiming Xue, Yunzheng Zhu, Luoting Zhuang, YongKyung Oh, Ricky Taira, Denise R Aberle, Ashley E Prosper, William Hsu, Yannan Lin
{"title":"从临床叙述中提取定量吸烟史以改善肺癌筛查的基于bert的模型。","authors":"Yiming Xue, Yunzheng Zhu, Luoting Zhuang, YongKyung Oh, Ricky Taira, Denise R Aberle, Ashley E Prosper, William Hsu, Yannan Lin","doi":"10.1101/2025.06.18.25329870","DOIUrl":null,"url":null,"abstract":"<p><p>Tobacco use is a critical risk factor for diseases such as cancer and cardiovascular disorders. While electronic health records can capture categorical smoking statuses accurately, granular quantitative details, such as pack years and years since quitting, are often embedded in clinical narratives. This information is crucial for assessing disease risk and determining eligibility for lung cancer screening (LCS). Existing natural language processing (NLP) tools excelled at identifying smoking statuses but struggled with extracting detailed quantitative data. To address this, we developed SmokeBERT, a fine-tuned BERT-based model optimized for extracting detailed smoking histories. Evaluations against a state-of-the-art rule-based NLP model demonstrated its superior performance on F1 scores (0.97 vs. 0.88 on the hold-out test set) and identification of LCS-eligible patients (e.g., 98% vs. 60% for ≥20 pack years). Future work includes creating a multilingual, language-agnostic version of SmokeBERT by incorporating datasets in multiple languages, exploring ensemble methods, and testing on larger datasets.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204286/pdf/","citationCount":"0","resultStr":"{\"title\":\"SmokeBERT: A BERT-based Model for Quantitative Smoking History Extraction from Clinical Narratives to Improve Lung Cancer Screening.\",\"authors\":\"Yiming Xue, Yunzheng Zhu, Luoting Zhuang, YongKyung Oh, Ricky Taira, Denise R Aberle, Ashley E Prosper, William Hsu, Yannan Lin\",\"doi\":\"10.1101/2025.06.18.25329870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tobacco use is a critical risk factor for diseases such as cancer and cardiovascular disorders. While electronic health records can capture categorical smoking statuses accurately, granular quantitative details, such as pack years and years since quitting, are often embedded in clinical narratives. This information is crucial for assessing disease risk and determining eligibility for lung cancer screening (LCS). Existing natural language processing (NLP) tools excelled at identifying smoking statuses but struggled with extracting detailed quantitative data. To address this, we developed SmokeBERT, a fine-tuned BERT-based model optimized for extracting detailed smoking histories. Evaluations against a state-of-the-art rule-based NLP model demonstrated its superior performance on F1 scores (0.97 vs. 0.88 on the hold-out test set) and identification of LCS-eligible patients (e.g., 98% vs. 60% for ≥20 pack years). Future work includes creating a multilingual, language-agnostic version of SmokeBERT by incorporating datasets in multiple languages, exploring ensemble methods, and testing on larger datasets.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.18.25329870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.18.25329870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

烟草使用是癌症和心血管疾病等疾病的一个关键风险因素。虽然电子健康记录可以准确地捕捉到绝对的吸烟状态,但颗粒状的定量细节,如戒烟后的年数和年数,往往嵌入在临床叙述中。这些信息对于评估疾病风险和确定肺癌筛查(LCS)的资格至关重要。现有的自然语言处理(NLP)工具擅长识别吸烟状况,但难以提取详细的定量数据。为了解决这个问题,我们开发了SmokeBERT,这是一个经过微调的基于bert的模型,用于提取详细的吸烟历史。针对最先进的基于规则的NLP模型的评估表明,其在F1评分(在hold out测试集上为0.97比0.88)和lcs合格患者的识别(例如,98%比60%≥20包年)方面表现优异。未来的工作包括通过合并多种语言的数据集、探索集成方法和在更大的数据集上进行测试,创建一个多语言的、与语言无关的SmokeBERT版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SmokeBERT: A BERT-based Model for Quantitative Smoking History Extraction from Clinical Narratives to Improve Lung Cancer Screening.

Tobacco use is a critical risk factor for diseases such as cancer and cardiovascular disorders. While electronic health records can capture categorical smoking statuses accurately, granular quantitative details, such as pack years and years since quitting, are often embedded in clinical narratives. This information is crucial for assessing disease risk and determining eligibility for lung cancer screening (LCS). Existing natural language processing (NLP) tools excelled at identifying smoking statuses but struggled with extracting detailed quantitative data. To address this, we developed SmokeBERT, a fine-tuned BERT-based model optimized for extracting detailed smoking histories. Evaluations against a state-of-the-art rule-based NLP model demonstrated its superior performance on F1 scores (0.97 vs. 0.88 on the hold-out test set) and identification of LCS-eligible patients (e.g., 98% vs. 60% for ≥20 pack years). Future work includes creating a multilingual, language-agnostic version of SmokeBERT by incorporating datasets in multiple languages, exploring ensemble methods, and testing on larger datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信