1型糖尿病多祖先多基因评分的建立和验证。

Aaron J Deutsch, Andrew S Bell, Dominika A Michalek, Adam B Burkholder, Stella Nam, Raymond J Kreienkamp, Seth A Sharp, Alicia Huerta-Chagoya, Ravi Mandla, Ruth Nanjala, Yang Luo, Richard A Oram, Jose C Florez, Suna Onengut-Gumuscu, Stephen S Rich, Alison A Motsinger-Reif, Alisa K Manning, Josep M Mercader, Miriam S Udler
{"title":"1型糖尿病多祖先多基因评分的建立和验证。","authors":"Aaron J Deutsch, Andrew S Bell, Dominika A Michalek, Adam B Burkholder, Stella Nam, Raymond J Kreienkamp, Seth A Sharp, Alicia Huerta-Chagoya, Ravi Mandla, Ruth Nanjala, Yang Luo, Richard A Oram, Jose C Florez, Suna Onengut-Gumuscu, Stephen S Rich, Alison A Motsinger-Reif, Alisa K Manning, Josep M Mercader, Miriam S Udler","doi":"10.1101/2025.06.20.25329522","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Polygenic scores strongly predict type 1 diabetes risk, but most scores were developed in European-ancestry populations. In this study, we developed a multi-ancestry polygenic score to accurately predict type 1 diabetes risk across diverse populations.</p><p><strong>Research design and methods: </strong>We used recent multi-ancestry genome-wide association studies to create a type 1 diabetes multi-ancestry polygenic score (T1D MAPS). We trained the score in the Mass General Brigham (MGB) Biobank (372 individuals with type 1 diabetes) and tested the score in the All of Us program (86 individuals with type 1 diabetes). We evaluated the area under the receiver operating characteristic curve (AUC), and we compared the AUC to two published single-ancestry scores: T1D GRS2<sub>EUR</sub> and T1D GRS<sub>AFR</sub>. We also developed an updated score (T1D MAPS2) that combines T1D GRS2<sub>EUR</sub> and T1D MAPS.</p><p><strong>Results: </strong>Among individuals with non-European ancestry, the AUC of T1D MAPS was 0.90, significantly higher than T1D GRS2<sub>EUR</sub> (0.82, <i>P</i> = 0.04) and T1D GRS<sub>AFR</sub> (0.82, <i>P</i> = 0.007). Among individuals with European ancestry, the AUC of T1D MAPS was slightly lower than T1D GRS2<sub>EUR</sub> (0.89 vs. 0.91, <i>P</i> = 0.02). However, T1D MAPS2 performed equivalently to T1D GRS2<sub>EUR</sub> in European ancestry (0.91 vs. 0.91, <i>P</i> = 0.45) while still performing better in non-European ancestry (0.90 vs. 0.82, <i>P</i> = 0.04).</p><p><strong>Conclusions: </strong>A novel polygenic score improves type 1 diabetes risk prediction in non-European ancestry while maintaining high predictive power in European ancestry. These findings advance the accuracy of type 1 diabetes genetic risk prediction across diverse populations.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204267/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Type 1 Diabetes Multi-Ancestry Polygenic Score.\",\"authors\":\"Aaron J Deutsch, Andrew S Bell, Dominika A Michalek, Adam B Burkholder, Stella Nam, Raymond J Kreienkamp, Seth A Sharp, Alicia Huerta-Chagoya, Ravi Mandla, Ruth Nanjala, Yang Luo, Richard A Oram, Jose C Florez, Suna Onengut-Gumuscu, Stephen S Rich, Alison A Motsinger-Reif, Alisa K Manning, Josep M Mercader, Miriam S Udler\",\"doi\":\"10.1101/2025.06.20.25329522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Polygenic scores strongly predict type 1 diabetes risk, but most scores were developed in European-ancestry populations. In this study, we developed a multi-ancestry polygenic score to accurately predict type 1 diabetes risk across diverse populations.</p><p><strong>Research design and methods: </strong>We used recent multi-ancestry genome-wide association studies to create a type 1 diabetes multi-ancestry polygenic score (T1D MAPS). We trained the score in the Mass General Brigham (MGB) Biobank (372 individuals with type 1 diabetes) and tested the score in the All of Us program (86 individuals with type 1 diabetes). We evaluated the area under the receiver operating characteristic curve (AUC), and we compared the AUC to two published single-ancestry scores: T1D GRS2<sub>EUR</sub> and T1D GRS<sub>AFR</sub>. We also developed an updated score (T1D MAPS2) that combines T1D GRS2<sub>EUR</sub> and T1D MAPS.</p><p><strong>Results: </strong>Among individuals with non-European ancestry, the AUC of T1D MAPS was 0.90, significantly higher than T1D GRS2<sub>EUR</sub> (0.82, <i>P</i> = 0.04) and T1D GRS<sub>AFR</sub> (0.82, <i>P</i> = 0.007). Among individuals with European ancestry, the AUC of T1D MAPS was slightly lower than T1D GRS2<sub>EUR</sub> (0.89 vs. 0.91, <i>P</i> = 0.02). However, T1D MAPS2 performed equivalently to T1D GRS2<sub>EUR</sub> in European ancestry (0.91 vs. 0.91, <i>P</i> = 0.45) while still performing better in non-European ancestry (0.90 vs. 0.82, <i>P</i> = 0.04).</p><p><strong>Conclusions: </strong>A novel polygenic score improves type 1 diabetes risk prediction in non-European ancestry while maintaining high predictive power in European ancestry. These findings advance the accuracy of type 1 diabetes genetic risk prediction across diverse populations.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204267/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.20.25329522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.20.25329522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:多基因评分强烈预测1型糖尿病的风险,但大多数评分是在欧洲血统人群中开发的。在这项研究中,我们开发了一个多祖先多基因评分来准确预测不同人群的1型糖尿病风险。研究设计和方法:我们使用最近的多祖先全基因组关联研究来创建1型糖尿病多祖先多基因评分(T1D MAPS)。我们在麻省总医院布里格姆(MGB)生物银行(372名1型糖尿病患者)中训练分数,并在“我们所有人”项目(86名1型糖尿病患者)中测试分数。我们评估了受试者工作特征曲线(AUC)下的面积,并将AUC与两个已发表的单祖先评分:T1D GRS2 EUR和T1D GRS AFR进行了比较。我们还开发了一个更新的评分(T1D MAPS2),它结合了T1D GRS2 EUR和T1D MAPS。结果:在非欧洲血统人群中,T1D MAPS的AUC为0.90,显著高于T1D GRS2 EUR (0.82, P = 0.04)和T1D GRS AFR (0.82, P = 0.007)。在具有欧洲血统的个体中,T1D MAPS的AUC略低于T1D GRS2 EUR(0.89比0.91,P = 0.02)。然而,T1D MAPS2在欧洲血统中的表现与T1D GRS2 EUR相当(0.91比0.91,P = 0.45),而在非欧洲血统中表现更好(0.90比0.82,P = 0.04)。结论:一种新的多基因评分提高了非欧洲血统的1型糖尿病风险预测,同时保持了对欧洲血统的高预测能力。这些发现提高了在不同人群中1型糖尿病遗传风险预测的准确性。文章重点:我们为什么要进行这项研究?1型糖尿病多基因评分可以高度预测疾病风险,但其表现因遗传血统而异。我们想要回答的具体问题是什么?我们能否开发出一种多基因评分,在不同人群中准确预测1型糖尿病的风险?我们发现了什么?我们的新多基因评分在欧洲人群中的表现与现有评分相似,在非欧洲人群中表现更佳。我们的发现意味着什么?这种多基因评分将改善基因多样化人群中1型糖尿病风险的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Validation of a Type 1 Diabetes Multi-Ancestry Polygenic Score.

Objective: Polygenic scores strongly predict type 1 diabetes risk, but most scores were developed in European-ancestry populations. In this study, we developed a multi-ancestry polygenic score to accurately predict type 1 diabetes risk across diverse populations.

Research design and methods: We used recent multi-ancestry genome-wide association studies to create a type 1 diabetes multi-ancestry polygenic score (T1D MAPS). We trained the score in the Mass General Brigham (MGB) Biobank (372 individuals with type 1 diabetes) and tested the score in the All of Us program (86 individuals with type 1 diabetes). We evaluated the area under the receiver operating characteristic curve (AUC), and we compared the AUC to two published single-ancestry scores: T1D GRS2EUR and T1D GRSAFR. We also developed an updated score (T1D MAPS2) that combines T1D GRS2EUR and T1D MAPS.

Results: Among individuals with non-European ancestry, the AUC of T1D MAPS was 0.90, significantly higher than T1D GRS2EUR (0.82, P = 0.04) and T1D GRSAFR (0.82, P = 0.007). Among individuals with European ancestry, the AUC of T1D MAPS was slightly lower than T1D GRS2EUR (0.89 vs. 0.91, P = 0.02). However, T1D MAPS2 performed equivalently to T1D GRS2EUR in European ancestry (0.91 vs. 0.91, P = 0.45) while still performing better in non-European ancestry (0.90 vs. 0.82, P = 0.04).

Conclusions: A novel polygenic score improves type 1 diabetes risk prediction in non-European ancestry while maintaining high predictive power in European ancestry. These findings advance the accuracy of type 1 diabetes genetic risk prediction across diverse populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信