基于注意力的深度学习用于肺鳞状癌前病变病理图像和基因表达数据的分析。

Lingyi Xu, Yohana Kefella, Yichi Zhang, Regan D Conrad, Kelley E Anderson, Kostyantyn Krysan, Gang Liu, Erin Kane, Adam Pennycuick, Sam M Janes, Mary E Reid, Eric J Burks, Ehab Billatos, Sarah A Mazzilli, Vijaya B Kolachalama, Jennifer E Beane
{"title":"基于注意力的深度学习用于肺鳞状癌前病变病理图像和基因表达数据的分析。","authors":"Lingyi Xu, Yohana Kefella, Yichi Zhang, Regan D Conrad, Kelley E Anderson, Kostyantyn Krysan, Gang Liu, Erin Kane, Adam Pennycuick, Sam M Janes, Mary E Reid, Eric J Burks, Ehab Billatos, Sarah A Mazzilli, Vijaya B Kolachalama, Jennifer E Beane","doi":"10.1101/2025.06.06.25328492","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular and cellular alterations to the normal pseudostratified columnar bronchial epithelium results in the development of bronchial premalignant lesions representing a spectrum of histology from normal to hyperplasia, metaplasia, dysplasia (mild, moderate, and severe), carcinoma in situ and invasive carcinoma. Several studies have identified molecular alterations associated with lesion histology and progression. The broad and continuous spectrum of histologic and molecular changes makes reproducible stratification of lesions across multiple studies challenging. Here we propose a transformer-based framework that flexibly utilizes transcriptomic and histologic patterns to distinguish lesions with bronchial dysplasia or worse from normal, hyperplasia, and metaplasia. We leveraged H&E whole slide images (WSIs) of endobronchial biopsies and bulk gene expression data (GE) from previously published studies and on-going lung precancer atlas efforts obtained from patients as high-risk for lung cancer. Models trained using both WSIs and GE compared to a single data modality had higher performance. On an external testing dataset of WSIs, the area under the ROC curve (AUROC) of the model trained on WSIs plus GE was 0.761±0.015 compared to 0.690±0.027 for model trained on WSIs. On external testing datasets of GE, the AUROC of the model trained on WSIs plus GE was 0.890±0.023 versus 0.816±0.032 for a model trained on GE. Based on these results, we leveraged data across 4 studies to train a flexible fusion model that allows one or both data modalities to be used in training. The model achieved an AUROC of 0.809±0.036 on external testing WSIs data and 0.903±0.022 on external testing GE data. Despite model training on a binary label, model probabilities are associated with histologic grade and the model identifies gene expression alterations associated with bronchial dysplasia across multiple studies. This framework maps bronchial premalignant lesions that contain at least one data modality into a spectrum of disease. In the future, a framework trained on multiple data modalities may be useful in predicting premalignant disease severity, progression, and interception agent efficacy.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Attention-based deep learning for analysis of pathology images and gene expression data in lung squamous premalignant lesions.\",\"authors\":\"Lingyi Xu, Yohana Kefella, Yichi Zhang, Regan D Conrad, Kelley E Anderson, Kostyantyn Krysan, Gang Liu, Erin Kane, Adam Pennycuick, Sam M Janes, Mary E Reid, Eric J Burks, Ehab Billatos, Sarah A Mazzilli, Vijaya B Kolachalama, Jennifer E Beane\",\"doi\":\"10.1101/2025.06.06.25328492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular and cellular alterations to the normal pseudostratified columnar bronchial epithelium results in the development of bronchial premalignant lesions representing a spectrum of histology from normal to hyperplasia, metaplasia, dysplasia (mild, moderate, and severe), carcinoma in situ and invasive carcinoma. Several studies have identified molecular alterations associated with lesion histology and progression. The broad and continuous spectrum of histologic and molecular changes makes reproducible stratification of lesions across multiple studies challenging. Here we propose a transformer-based framework that flexibly utilizes transcriptomic and histologic patterns to distinguish lesions with bronchial dysplasia or worse from normal, hyperplasia, and metaplasia. We leveraged H&E whole slide images (WSIs) of endobronchial biopsies and bulk gene expression data (GE) from previously published studies and on-going lung precancer atlas efforts obtained from patients as high-risk for lung cancer. Models trained using both WSIs and GE compared to a single data modality had higher performance. On an external testing dataset of WSIs, the area under the ROC curve (AUROC) of the model trained on WSIs plus GE was 0.761±0.015 compared to 0.690±0.027 for model trained on WSIs. On external testing datasets of GE, the AUROC of the model trained on WSIs plus GE was 0.890±0.023 versus 0.816±0.032 for a model trained on GE. Based on these results, we leveraged data across 4 studies to train a flexible fusion model that allows one or both data modalities to be used in training. The model achieved an AUROC of 0.809±0.036 on external testing WSIs data and 0.903±0.022 on external testing GE data. Despite model training on a binary label, model probabilities are associated with histologic grade and the model identifies gene expression alterations associated with bronchial dysplasia across multiple studies. This framework maps bronchial premalignant lesions that contain at least one data modality into a spectrum of disease. In the future, a framework trained on multiple data modalities may be useful in predicting premalignant disease severity, progression, and interception agent efficacy.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.06.25328492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.06.25328492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正常假层状柱状支气管上皮的分子和细胞改变导致支气管癌前病变的发展,其组织学表现为从正常到增生、化生、不典型增生(轻度、中度和重度)、原位癌和浸润性癌。一些研究已经确定了与病变组织学和进展相关的分子改变。组织学和分子变化的广泛和连续的光谱使得在多个研究中可重复的病变分层具有挑战性。在这里,我们提出了一个基于转换器的框架,灵活地利用转录组学和组织学模式来区分支气管发育不良或更严重的病变与正常、增生和化生。我们利用H&E支气管活检的全切片图像(WSIs)和大量基因表达数据(GE),这些数据来自先前发表的研究和正在进行的肺癌高危患者的肺癌前图谱。与单一数据模式相比,同时使用wsi和GE训练的模型具有更高的性能。在wsi的外部测试数据集上,wsi + GE训练的模型的ROC曲线下面积(AUROC)为0.761±0.015,而wsi训练的模型为0.690±0.027。在GE的外部测试数据集上,wsi + GE训练模型的AUROC为0.890±0.023,GE训练模型的AUROC为0.816±0.032。基于这些结果,我们利用4项研究中的数据来训练一个灵活的融合模型,该模型允许在训练中使用一种或两种数据模式。模型在外部测试wsi数据上的AUROC为0.809±0.036,在外部测试GE数据上的AUROC为0.903±0.022。尽管在二元标签上进行模型训练,但模型概率与组织学分级有关,并且该模型在多个研究中识别与支气管发育不良相关的基因表达改变。该框架将包含至少一种数据模式的支气管癌前病变映射到疾病谱中。在未来,在多种数据模式上训练的框架可能有助于预测恶性前病变的严重程度、进展和拦截剂的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-based deep learning for analysis of pathology images and gene expression data in lung squamous premalignant lesions.

Molecular and cellular alterations to the normal pseudostratified columnar bronchial epithelium results in the development of bronchial premalignant lesions representing a spectrum of histology from normal to hyperplasia, metaplasia, dysplasia (mild, moderate, and severe), carcinoma in situ and invasive carcinoma. Several studies have identified molecular alterations associated with lesion histology and progression. The broad and continuous spectrum of histologic and molecular changes makes reproducible stratification of lesions across multiple studies challenging. Here we propose a transformer-based framework that flexibly utilizes transcriptomic and histologic patterns to distinguish lesions with bronchial dysplasia or worse from normal, hyperplasia, and metaplasia. We leveraged H&E whole slide images (WSIs) of endobronchial biopsies and bulk gene expression data (GE) from previously published studies and on-going lung precancer atlas efforts obtained from patients as high-risk for lung cancer. Models trained using both WSIs and GE compared to a single data modality had higher performance. On an external testing dataset of WSIs, the area under the ROC curve (AUROC) of the model trained on WSIs plus GE was 0.761±0.015 compared to 0.690±0.027 for model trained on WSIs. On external testing datasets of GE, the AUROC of the model trained on WSIs plus GE was 0.890±0.023 versus 0.816±0.032 for a model trained on GE. Based on these results, we leveraged data across 4 studies to train a flexible fusion model that allows one or both data modalities to be used in training. The model achieved an AUROC of 0.809±0.036 on external testing WSIs data and 0.903±0.022 on external testing GE data. Despite model training on a binary label, model probabilities are associated with histologic grade and the model identifies gene expression alterations associated with bronchial dysplasia across multiple studies. This framework maps bronchial premalignant lesions that contain at least one data modality into a spectrum of disease. In the future, a framework trained on multiple data modalities may be useful in predicting premalignant disease severity, progression, and interception agent efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信