{"title":"感觉运动脑机接口头皮下脑电图。","authors":"T B Mahoney, D B Grayden, S E John","doi":"10.1088/1741-2552/ade9f1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. To establish sub-scalp electroencephalography (EEG) as a viable option for brain-computer interface (BCI) applications, particularly for chronic use, by demonstrating its effectiveness in recording and classifying sensorimotor neural activity.<i>Approach</i>. Two experiments were conducted in this study. The first aim was to demonstrate the high spatial resolution of sub-scalp EEG through analysis of somatosensory evoked potentials in sheep models. The second focused on the practical application of sub-scalp EEG, classifying motor execution using data collected during a sheep behavioural experiment.<i>Main results</i>. We successfully demonstrated the recording of sensorimotor rhythms using sub-scalp EEG in sheep models. Important spatial, temporal, and spectral features of these signals were identified, and we were able to classify motor execution with above-chance performance. These results are comparable to previous work that investigated signal quality and motor execution classification using ECoG and endovascular arrays in sheep models.<i>Significance</i>. These results suggest that sub-scalp EEG may provide signal quality that approaches that of more invasive neural recording methods such as ECoG and endovascular arrays, and support the use of sub-scalp EEG for chronic BCI applications.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-scalp EEG for sensorimotor brain-computer interface.\",\"authors\":\"T B Mahoney, D B Grayden, S E John\",\"doi\":\"10.1088/1741-2552/ade9f1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. To establish sub-scalp electroencephalography (EEG) as a viable option for brain-computer interface (BCI) applications, particularly for chronic use, by demonstrating its effectiveness in recording and classifying sensorimotor neural activity.<i>Approach</i>. Two experiments were conducted in this study. The first aim was to demonstrate the high spatial resolution of sub-scalp EEG through analysis of somatosensory evoked potentials in sheep models. The second focused on the practical application of sub-scalp EEG, classifying motor execution using data collected during a sheep behavioural experiment.<i>Main results</i>. We successfully demonstrated the recording of sensorimotor rhythms using sub-scalp EEG in sheep models. Important spatial, temporal, and spectral features of these signals were identified, and we were able to classify motor execution with above-chance performance. These results are comparable to previous work that investigated signal quality and motor execution classification using ECoG and endovascular arrays in sheep models.<i>Significance</i>. These results suggest that sub-scalp EEG may provide signal quality that approaches that of more invasive neural recording methods such as ECoG and endovascular arrays, and support the use of sub-scalp EEG for chronic BCI applications.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ade9f1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ade9f1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-scalp EEG for sensorimotor brain-computer interface.
Objective. To establish sub-scalp electroencephalography (EEG) as a viable option for brain-computer interface (BCI) applications, particularly for chronic use, by demonstrating its effectiveness in recording and classifying sensorimotor neural activity.Approach. Two experiments were conducted in this study. The first aim was to demonstrate the high spatial resolution of sub-scalp EEG through analysis of somatosensory evoked potentials in sheep models. The second focused on the practical application of sub-scalp EEG, classifying motor execution using data collected during a sheep behavioural experiment.Main results. We successfully demonstrated the recording of sensorimotor rhythms using sub-scalp EEG in sheep models. Important spatial, temporal, and spectral features of these signals were identified, and we were able to classify motor execution with above-chance performance. These results are comparable to previous work that investigated signal quality and motor execution classification using ECoG and endovascular arrays in sheep models.Significance. These results suggest that sub-scalp EEG may provide signal quality that approaches that of more invasive neural recording methods such as ECoG and endovascular arrays, and support the use of sub-scalp EEG for chronic BCI applications.