{"title":"用于基因工程果蝇血清素检测的导电纳米氧化镍/氢氧化物纸电化学传感器。","authors":"Sharmila Prashanth, Manvitha Kadandelu, Shamprasad Varija Raghu, K Sudhakara Prasad, Airody Vasudeva Adhikari","doi":"10.1039/d5tb01216c","DOIUrl":null,"url":null,"abstract":"<p><p>Serotonin is considered an integral part in neuropsychiatric diseases, such as major depressive disorder, schizophrenia, post-traumatic stress disorder, obsessive-compulsive disorder, anxiety disorder, and substance use disorder. Understanding the levels of serotonin under different disease conditions is important. Herein, we explored the development of an efficient electrochemical sensor utilizing sustainable paper electrode integrated with nanocomposites through a simultaneous electrochemical deposition strategy. The as-developed sensor is further investigated with surface and electrochemical studies to understand the robust fabrication of the sensor as well as the electrochemical characteristics to show the improved electron transfer kinetics and detection capabilities even in the presence of common interfering biomolecules. The sensor demonstrated a broad linear range from 0.007 nM to 500 μM, with an impressive limit of detection of 0.024 nM for the low concentration range (0.007-0.48 nM) and 383.7 nM for the high concentration range both falling well within the clinically relevant detection levels of serotonin. To evaluate the practical performance, the developed sensor was tested on brain homogenates obtained from genetically modified <i>Drosophila melanogaster</i> models with different serotonin levels. The sensor effectively detected the <i>in vivo</i> changes in serotonin level, and the results were validated against gold-standard HPLC analysis and immunohistochemical staining experiments. The sensors' notable stability, selectivity, and sensitivity towards serotonin make them a valuable tool for neurochemical research and clinical applications, particularly in studying serotonin-related neurological conditions and advancing personalized treatments.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive nano nickel oxide/hydroxide paper electrochemical sensor for serotonin detection in genetically engineered <i>Drosophila</i>.\",\"authors\":\"Sharmila Prashanth, Manvitha Kadandelu, Shamprasad Varija Raghu, K Sudhakara Prasad, Airody Vasudeva Adhikari\",\"doi\":\"10.1039/d5tb01216c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serotonin is considered an integral part in neuropsychiatric diseases, such as major depressive disorder, schizophrenia, post-traumatic stress disorder, obsessive-compulsive disorder, anxiety disorder, and substance use disorder. Understanding the levels of serotonin under different disease conditions is important. Herein, we explored the development of an efficient electrochemical sensor utilizing sustainable paper electrode integrated with nanocomposites through a simultaneous electrochemical deposition strategy. The as-developed sensor is further investigated with surface and electrochemical studies to understand the robust fabrication of the sensor as well as the electrochemical characteristics to show the improved electron transfer kinetics and detection capabilities even in the presence of common interfering biomolecules. The sensor demonstrated a broad linear range from 0.007 nM to 500 μM, with an impressive limit of detection of 0.024 nM for the low concentration range (0.007-0.48 nM) and 383.7 nM for the high concentration range both falling well within the clinically relevant detection levels of serotonin. To evaluate the practical performance, the developed sensor was tested on brain homogenates obtained from genetically modified <i>Drosophila melanogaster</i> models with different serotonin levels. The sensor effectively detected the <i>in vivo</i> changes in serotonin level, and the results were validated against gold-standard HPLC analysis and immunohistochemical staining experiments. The sensors' notable stability, selectivity, and sensitivity towards serotonin make them a valuable tool for neurochemical research and clinical applications, particularly in studying serotonin-related neurological conditions and advancing personalized treatments.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb01216c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01216c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conductive nano nickel oxide/hydroxide paper electrochemical sensor for serotonin detection in genetically engineered Drosophila.
Serotonin is considered an integral part in neuropsychiatric diseases, such as major depressive disorder, schizophrenia, post-traumatic stress disorder, obsessive-compulsive disorder, anxiety disorder, and substance use disorder. Understanding the levels of serotonin under different disease conditions is important. Herein, we explored the development of an efficient electrochemical sensor utilizing sustainable paper electrode integrated with nanocomposites through a simultaneous electrochemical deposition strategy. The as-developed sensor is further investigated with surface and electrochemical studies to understand the robust fabrication of the sensor as well as the electrochemical characteristics to show the improved electron transfer kinetics and detection capabilities even in the presence of common interfering biomolecules. The sensor demonstrated a broad linear range from 0.007 nM to 500 μM, with an impressive limit of detection of 0.024 nM for the low concentration range (0.007-0.48 nM) and 383.7 nM for the high concentration range both falling well within the clinically relevant detection levels of serotonin. To evaluate the practical performance, the developed sensor was tested on brain homogenates obtained from genetically modified Drosophila melanogaster models with different serotonin levels. The sensor effectively detected the in vivo changes in serotonin level, and the results were validated against gold-standard HPLC analysis and immunohistochemical staining experiments. The sensors' notable stability, selectivity, and sensitivity towards serotonin make them a valuable tool for neurochemical research and clinical applications, particularly in studying serotonin-related neurological conditions and advancing personalized treatments.