灵敏的多通道零到超低场核磁共振与原子磁强计阵列。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-06-27 eCollection Date: 2025-06-01 DOI:10.1093/pnasnexus/pgaf187
Blake Andrews, Matthew Lai, Zhen Wang, Norihisa Kato, Michael C D Tayler, Emanuel Druga, Ashok Ajoy
{"title":"灵敏的多通道零到超低场核磁共振与原子磁强计阵列。","authors":"Blake Andrews, Matthew Lai, Zhen Wang, Norihisa Kato, Michael C D Tayler, Emanuel Druga, Ashok Ajoy","doi":"10.1093/pnasnexus/pgaf187","DOIUrl":null,"url":null,"abstract":"<p><p>Despite its versatility and high chemical specificity, conventional nuclear magnetic resonance (NMR) spectroscopy is limited in measurement throughput due to the need for high-homogeneity magnetic fields, necessitating sequential sample analysis, and expensive devices. Here, we propose a multichannel NMR device that addresses these limitations by leveraging the zero-to ultralow-field (ZULF) regime, where simultaneous detection of multiple samples is carried out via an array of compact optically pumped magnetometers (OPMs). A magnetic field is used only for prepolarization, permitting the use of large-bore, high-field, <i>inhomogeneous</i> magnets that can accommodate multiple samples concurrently. Through systematic improvements, we demonstrate sensitive, high-resolution ZULF NMR spectroscopy with sensitivity comparable to benchtop <sup>13</sup>C NMR systems. The spectroscopy remains robust without the need for field shimming for periods on the order of weeks. We show the detection of ZULF NMR signals from organic molecules without isotopic enrichment, and demonstrate the parallelized detection of three distinct samples simultaneously as a proof-of-concept, with the ability to scale further to over 100 channels at a cost comparable to traditional liquid state NMR systems. This work sets the stage for using multichannel \"NMR camera\" devices for inline reaction monitoring, robotic chemistry, quality control, and high-throughput assays.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 6","pages":"pgaf187"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sensitive multichannel zero-to ultralow-field NMR with atomic magnetometer arrays.\",\"authors\":\"Blake Andrews, Matthew Lai, Zhen Wang, Norihisa Kato, Michael C D Tayler, Emanuel Druga, Ashok Ajoy\",\"doi\":\"10.1093/pnasnexus/pgaf187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite its versatility and high chemical specificity, conventional nuclear magnetic resonance (NMR) spectroscopy is limited in measurement throughput due to the need for high-homogeneity magnetic fields, necessitating sequential sample analysis, and expensive devices. Here, we propose a multichannel NMR device that addresses these limitations by leveraging the zero-to ultralow-field (ZULF) regime, where simultaneous detection of multiple samples is carried out via an array of compact optically pumped magnetometers (OPMs). A magnetic field is used only for prepolarization, permitting the use of large-bore, high-field, <i>inhomogeneous</i> magnets that can accommodate multiple samples concurrently. Through systematic improvements, we demonstrate sensitive, high-resolution ZULF NMR spectroscopy with sensitivity comparable to benchtop <sup>13</sup>C NMR systems. The spectroscopy remains robust without the need for field shimming for periods on the order of weeks. We show the detection of ZULF NMR signals from organic molecules without isotopic enrichment, and demonstrate the parallelized detection of three distinct samples simultaneously as a proof-of-concept, with the ability to scale further to over 100 channels at a cost comparable to traditional liquid state NMR systems. This work sets the stage for using multichannel \\\"NMR camera\\\" devices for inline reaction monitoring, robotic chemistry, quality control, and high-throughput assays.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 6\",\"pages\":\"pgaf187\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管它的通用性和高化学特异性,传统的核磁共振(NMR)光谱是有限的测量吞吐量,由于需要高均匀性的磁场,需要顺序样品分析,和昂贵的设备。在这里,我们提出了一种多通道核磁共振装置,通过利用零到超低场(ZULF)机制来解决这些限制,其中通过一系列紧凑的光泵浦磁强计(opm)同时检测多个样品。磁场仅用于预极化,允许使用可以同时容纳多个样品的大口径,高场,不均匀磁铁。通过系统改进,我们展示了灵敏,高分辨率的ZULF核磁共振光谱,其灵敏度可与台式13C核磁共振系统相媲美。光谱学保持稳定,不需要连续几周的磁场振荡。我们展示了从没有同位素富集的有机分子中检测ZULF核磁共振信号,并展示了同时并行检测三个不同样品的概念验证,具有进一步扩展到100多个通道的能力,成本与传统的液态核磁共振系统相当。这项工作为使用多通道“核磁共振相机”设备进行在线反应监测、机器人化学、质量控制和高通量分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitive multichannel zero-to ultralow-field NMR with atomic magnetometer arrays.

Despite its versatility and high chemical specificity, conventional nuclear magnetic resonance (NMR) spectroscopy is limited in measurement throughput due to the need for high-homogeneity magnetic fields, necessitating sequential sample analysis, and expensive devices. Here, we propose a multichannel NMR device that addresses these limitations by leveraging the zero-to ultralow-field (ZULF) regime, where simultaneous detection of multiple samples is carried out via an array of compact optically pumped magnetometers (OPMs). A magnetic field is used only for prepolarization, permitting the use of large-bore, high-field, inhomogeneous magnets that can accommodate multiple samples concurrently. Through systematic improvements, we demonstrate sensitive, high-resolution ZULF NMR spectroscopy with sensitivity comparable to benchtop 13C NMR systems. The spectroscopy remains robust without the need for field shimming for periods on the order of weeks. We show the detection of ZULF NMR signals from organic molecules without isotopic enrichment, and demonstrate the parallelized detection of three distinct samples simultaneously as a proof-of-concept, with the ability to scale further to over 100 channels at a cost comparable to traditional liquid state NMR systems. This work sets the stage for using multichannel "NMR camera" devices for inline reaction monitoring, robotic chemistry, quality control, and high-throughput assays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信