内聚蛋白变异与减数分裂时形染色体分离精度。

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuanyuan Liu, Bohan Liu, Shuo Wang, Li Zhao, Qian Li, Feifei Qi, Ruoxi Wang, Jun Zhou, Jinmin Gao
{"title":"内聚蛋白变异与减数分裂时形染色体分离精度。","authors":"Yuanyuan Liu, Bohan Liu, Shuo Wang, Li Zhao, Qian Li, Feifei Qi, Ruoxi Wang, Jun Zhou, Jinmin Gao","doi":"10.1016/j.jgg.2025.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>The frequency of aneuploid gamete formation increases with maternal age, yet the effects of genetic variants on meiotic chromosome segregation accuracy during aging remain poorly understood. Using the multicellular organism Caenorhabditis elegans, we investigate the impact of mutations in the conserved cohesin complex on age-associated meiotic errors. Point mutations in the head domain of the cohesin component SMC-1, which alter local hydrophobicity, cause meiotic defects that vary with age. A severe mutation causes incomplete synapsis and defective crossover formation, and a minor one causes age-related diakinesis bivalent abnormalities. Notably, while the mild mutation causes defects only in aged worms, worms with the severe mutation exhibit significantly alleviated phenotypes with age. Genetic and cytological analyses suggest that this alleviation results from a slowed meiotic progression during early prophase, which restores impaired cohesin loading. These findings reveal that cohesin variants, meiotic progression speed during early prophase, and the overall duration of meiosis collectively shape the accuracy of meiotic chromosome segregation.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohesin variants and meiotic timing shape chromosome segregation accuracy.\",\"authors\":\"Yuanyuan Liu, Bohan Liu, Shuo Wang, Li Zhao, Qian Li, Feifei Qi, Ruoxi Wang, Jun Zhou, Jinmin Gao\",\"doi\":\"10.1016/j.jgg.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The frequency of aneuploid gamete formation increases with maternal age, yet the effects of genetic variants on meiotic chromosome segregation accuracy during aging remain poorly understood. Using the multicellular organism Caenorhabditis elegans, we investigate the impact of mutations in the conserved cohesin complex on age-associated meiotic errors. Point mutations in the head domain of the cohesin component SMC-1, which alter local hydrophobicity, cause meiotic defects that vary with age. A severe mutation causes incomplete synapsis and defective crossover formation, and a minor one causes age-related diakinesis bivalent abnormalities. Notably, while the mild mutation causes defects only in aged worms, worms with the severe mutation exhibit significantly alleviated phenotypes with age. Genetic and cytological analyses suggest that this alleviation results from a slowed meiotic progression during early prophase, which restores impaired cohesin loading. These findings reveal that cohesin variants, meiotic progression speed during early prophase, and the overall duration of meiosis collectively shape the accuracy of meiotic chromosome segregation.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2025.06.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.06.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非整倍体配子形成的频率随着母亲年龄的增长而增加,但遗传变异对衰老过程中减数分裂染色体分离准确性的影响仍然知之甚少。利用多细胞生物秀丽隐杆线虫,我们研究了保守黏结蛋白复合物突变对年龄相关减数分裂错误的影响。黏结成分SMC-1头部区域的点突变会改变局部疏水性,导致减数分裂缺陷随年龄变化。严重的突变导致突触不完整和有缺陷的交叉形成,轻微的突变导致与年龄相关的糖尿病二价异常。值得注意的是,轻度突变仅在老年蠕虫中引起缺陷,而严重突变的蠕虫随着年龄的增长表现出显着减轻的表型。遗传和细胞学分析表明,这种减轻是由于早期减数分裂进程减慢,这恢复了受损的粘接蛋白负荷。这些结果表明,内聚蛋白变异、减数分裂前期的进展速度和减数分裂的总持续时间共同决定了减数分裂染色体分离的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohesin variants and meiotic timing shape chromosome segregation accuracy.

The frequency of aneuploid gamete formation increases with maternal age, yet the effects of genetic variants on meiotic chromosome segregation accuracy during aging remain poorly understood. Using the multicellular organism Caenorhabditis elegans, we investigate the impact of mutations in the conserved cohesin complex on age-associated meiotic errors. Point mutations in the head domain of the cohesin component SMC-1, which alter local hydrophobicity, cause meiotic defects that vary with age. A severe mutation causes incomplete synapsis and defective crossover formation, and a minor one causes age-related diakinesis bivalent abnormalities. Notably, while the mild mutation causes defects only in aged worms, worms with the severe mutation exhibit significantly alleviated phenotypes with age. Genetic and cytological analyses suggest that this alleviation results from a slowed meiotic progression during early prophase, which restores impaired cohesin loading. These findings reveal that cohesin variants, meiotic progression speed during early prophase, and the overall duration of meiosis collectively shape the accuracy of meiotic chromosome segregation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信