Juanjuan Huang, Adam P Tornheim, Xianbo Shi, Mark Wolfman, Yanna Chen, Steve M Heald, Shelly D Kelly, George E Sterbinsky
{"title":"使用独立掠入射聚焦和凸弯曲布拉格晶体色散光学的色散x射线吸收光谱。","authors":"Juanjuan Huang, Adam P Tornheim, Xianbo Shi, Mark Wolfman, Yanna Chen, Steve M Heald, Shelly D Kelly, George E Sterbinsky","doi":"10.1107/S1600577525004953","DOIUrl":null,"url":null,"abstract":"<p><p>We present a modular instrument for dispersive X-ray absorption spectroscopy (DXAS) developed for the Advanced Spectroscopy Beamline at Sector 25 of the Advanced Photon Source. The setup employs a double-multilayer monochromator to provide X-rays with a broad energy bandwidth, Kirkpatrick-Baez mirrors for focusing, a convexly bent Bragg-crystal polychromator for energy dispersion, and a pixel-array detector to resolve all X-ray energies and collect their intensity simultaneously, thereby enabling acquisition of a full X-ray absorption spectrum in a single shot. The use of separate optics for X-ray focusing and energy dispersion provides high spatial resolution and avoids chromatic aberrations inherent in focusing bent-crystal optics, and a modular design makes implementation of the technique at other beamlines possible without requiring modifications to the upstream beamline configurations. Theoretical calculations are performed to determine optimal instrument operating parameters and demonstrate that an energy resolution better than the K-edge core-hole lifetime broadening can be maintained while providing a sufficient bandwidth for X-ray absorption near-edge structure spectroscopy through the full operating range of 5-11 keV. Additionally, instrument design, data analysis methods, and initial DXAS results on lithium-manganese-nickel oxide laminates are presented.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1068-1084"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236251/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dispersive X-ray absorption spectroscopy using independent grazing-incidence focusing and convexly bent Bragg-crystal dispersing optics.\",\"authors\":\"Juanjuan Huang, Adam P Tornheim, Xianbo Shi, Mark Wolfman, Yanna Chen, Steve M Heald, Shelly D Kelly, George E Sterbinsky\",\"doi\":\"10.1107/S1600577525004953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a modular instrument for dispersive X-ray absorption spectroscopy (DXAS) developed for the Advanced Spectroscopy Beamline at Sector 25 of the Advanced Photon Source. The setup employs a double-multilayer monochromator to provide X-rays with a broad energy bandwidth, Kirkpatrick-Baez mirrors for focusing, a convexly bent Bragg-crystal polychromator for energy dispersion, and a pixel-array detector to resolve all X-ray energies and collect their intensity simultaneously, thereby enabling acquisition of a full X-ray absorption spectrum in a single shot. The use of separate optics for X-ray focusing and energy dispersion provides high spatial resolution and avoids chromatic aberrations inherent in focusing bent-crystal optics, and a modular design makes implementation of the technique at other beamlines possible without requiring modifications to the upstream beamline configurations. Theoretical calculations are performed to determine optimal instrument operating parameters and demonstrate that an energy resolution better than the K-edge core-hole lifetime broadening can be maintained while providing a sufficient bandwidth for X-ray absorption near-edge structure spectroscopy through the full operating range of 5-11 keV. Additionally, instrument design, data analysis methods, and initial DXAS results on lithium-manganese-nickel oxide laminates are presented.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"1068-1084\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236251/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577525004953\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525004953","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Dispersive X-ray absorption spectroscopy using independent grazing-incidence focusing and convexly bent Bragg-crystal dispersing optics.
We present a modular instrument for dispersive X-ray absorption spectroscopy (DXAS) developed for the Advanced Spectroscopy Beamline at Sector 25 of the Advanced Photon Source. The setup employs a double-multilayer monochromator to provide X-rays with a broad energy bandwidth, Kirkpatrick-Baez mirrors for focusing, a convexly bent Bragg-crystal polychromator for energy dispersion, and a pixel-array detector to resolve all X-ray energies and collect their intensity simultaneously, thereby enabling acquisition of a full X-ray absorption spectrum in a single shot. The use of separate optics for X-ray focusing and energy dispersion provides high spatial resolution and avoids chromatic aberrations inherent in focusing bent-crystal optics, and a modular design makes implementation of the technique at other beamlines possible without requiring modifications to the upstream beamline configurations. Theoretical calculations are performed to determine optimal instrument operating parameters and demonstrate that an energy resolution better than the K-edge core-hole lifetime broadening can be maintained while providing a sufficient bandwidth for X-ray absorption near-edge structure spectroscopy through the full operating range of 5-11 keV. Additionally, instrument design, data analysis methods, and initial DXAS results on lithium-manganese-nickel oxide laminates are presented.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.