Bo Zhang, Bao-Dong Gao, Yuan Su, Wen-Jing Mi, Tong-Xu Zeng, Fei-Fei Ma, Xiao-Qin Ha
{"title":"人脐带间充质干细胞通过AKT/MEK/ERK通路减少急性高海拔缺氧大鼠血小板α-颗粒释放。","authors":"Bo Zhang, Bao-Dong Gao, Yuan Su, Wen-Jing Mi, Tong-Xu Zeng, Fei-Fei Ma, Xiao-Qin Ha","doi":"10.4252/wjsc.v17.i6.106272","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While acute exposure to high-altitude hypoxic environments can lead to increased thrombosis risk, preventive measures are currently limited. Recently, human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation has been found effective in preventing and treating various clinical conditions, including thrombotic diseases. Platelets are crucial for thrombus formation, and their α-granules are key determinants of platelet function. However, little is known about the influence of hUC-MSCs on platelet α-granules.</p><p><strong>Aim: </strong>To investigate the influence of hUC-MSCs on platelet α-granules in rats during acute exposure to high-altitude hypoxia.</p><p><strong>Methods: </strong>Rats were assigned to three groups, namely, low-altitude, high-altitude, and hUC-MSC-treated groups. The low-altitude group was pretreated with normal saline and housed at an altitude of 1500 m. Rats in the high-altitude group received similar pretreatment and were housed in a simulated hypobaric hypoxia chamber with an altitude of 6500 m and oxygen partial pressure of 7.7 kPa. hUC-MSC-treated rats were pretreated with hUC-MSCs and exposed to hypoxic conditions. Aortic blood was collected after three days to assess platelet counts and morphology and α-granule release.</p><p><strong>Results: </strong>Compared to the low-altitude group, the high-altitude group exhibited significantly higher platelet counts, plasma levels of von Willebrand factor, platelet factor 4, beta-thromboglobulin, as well as surface P-selectin (CD62p) and p-protein kinase B, p-mitogen-activated protein kinase, and p-extracellular-signal regulated kinase expression in platelets. Platelet morphology in the high-altitude group was irregular, with extended pseudopodia and increased α-granule densities. However, these changes were not apparent in the hUC-MSC-treated group.</p><p><strong>Conclusion: </strong>Acute exposure to high-altitude hypoxia increased platelet counts, altered platelet morphology, and increased α-granule density and release. These effects were mitigated by hUC-MSC treatment, mediated by the protein kinase B/mitogen-activated protein kinase/extracellular-signal regulated kinase pathway. The results indicate that hUC-MSCs may represent a promising and effective approach for the prevention and treatment of acute high-altitude-associated thrombosis, providing an experimental foundation for the development of clinical applications.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"17 6","pages":"106272"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203129/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human umbilical cord mesenchymal stem cells reduce platelet α-granule release in rats <i>via</i> the AKT/MEK/ERK pathway during acute exposure to high-altitude hypoxia.\",\"authors\":\"Bo Zhang, Bao-Dong Gao, Yuan Su, Wen-Jing Mi, Tong-Xu Zeng, Fei-Fei Ma, Xiao-Qin Ha\",\"doi\":\"10.4252/wjsc.v17.i6.106272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>While acute exposure to high-altitude hypoxic environments can lead to increased thrombosis risk, preventive measures are currently limited. Recently, human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation has been found effective in preventing and treating various clinical conditions, including thrombotic diseases. Platelets are crucial for thrombus formation, and their α-granules are key determinants of platelet function. However, little is known about the influence of hUC-MSCs on platelet α-granules.</p><p><strong>Aim: </strong>To investigate the influence of hUC-MSCs on platelet α-granules in rats during acute exposure to high-altitude hypoxia.</p><p><strong>Methods: </strong>Rats were assigned to three groups, namely, low-altitude, high-altitude, and hUC-MSC-treated groups. The low-altitude group was pretreated with normal saline and housed at an altitude of 1500 m. Rats in the high-altitude group received similar pretreatment and were housed in a simulated hypobaric hypoxia chamber with an altitude of 6500 m and oxygen partial pressure of 7.7 kPa. hUC-MSC-treated rats were pretreated with hUC-MSCs and exposed to hypoxic conditions. Aortic blood was collected after three days to assess platelet counts and morphology and α-granule release.</p><p><strong>Results: </strong>Compared to the low-altitude group, the high-altitude group exhibited significantly higher platelet counts, plasma levels of von Willebrand factor, platelet factor 4, beta-thromboglobulin, as well as surface P-selectin (CD62p) and p-protein kinase B, p-mitogen-activated protein kinase, and p-extracellular-signal regulated kinase expression in platelets. Platelet morphology in the high-altitude group was irregular, with extended pseudopodia and increased α-granule densities. However, these changes were not apparent in the hUC-MSC-treated group.</p><p><strong>Conclusion: </strong>Acute exposure to high-altitude hypoxia increased platelet counts, altered platelet morphology, and increased α-granule density and release. These effects were mitigated by hUC-MSC treatment, mediated by the protein kinase B/mitogen-activated protein kinase/extracellular-signal regulated kinase pathway. The results indicate that hUC-MSCs may represent a promising and effective approach for the prevention and treatment of acute high-altitude-associated thrombosis, providing an experimental foundation for the development of clinical applications.</p>\",\"PeriodicalId\":23775,\"journal\":{\"name\":\"World journal of stem cells\",\"volume\":\"17 6\",\"pages\":\"106272\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203129/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4252/wjsc.v17.i6.106272\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v17.i6.106272","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Human umbilical cord mesenchymal stem cells reduce platelet α-granule release in rats via the AKT/MEK/ERK pathway during acute exposure to high-altitude hypoxia.
Background: While acute exposure to high-altitude hypoxic environments can lead to increased thrombosis risk, preventive measures are currently limited. Recently, human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation has been found effective in preventing and treating various clinical conditions, including thrombotic diseases. Platelets are crucial for thrombus formation, and their α-granules are key determinants of platelet function. However, little is known about the influence of hUC-MSCs on platelet α-granules.
Aim: To investigate the influence of hUC-MSCs on platelet α-granules in rats during acute exposure to high-altitude hypoxia.
Methods: Rats were assigned to three groups, namely, low-altitude, high-altitude, and hUC-MSC-treated groups. The low-altitude group was pretreated with normal saline and housed at an altitude of 1500 m. Rats in the high-altitude group received similar pretreatment and were housed in a simulated hypobaric hypoxia chamber with an altitude of 6500 m and oxygen partial pressure of 7.7 kPa. hUC-MSC-treated rats were pretreated with hUC-MSCs and exposed to hypoxic conditions. Aortic blood was collected after three days to assess platelet counts and morphology and α-granule release.
Results: Compared to the low-altitude group, the high-altitude group exhibited significantly higher platelet counts, plasma levels of von Willebrand factor, platelet factor 4, beta-thromboglobulin, as well as surface P-selectin (CD62p) and p-protein kinase B, p-mitogen-activated protein kinase, and p-extracellular-signal regulated kinase expression in platelets. Platelet morphology in the high-altitude group was irregular, with extended pseudopodia and increased α-granule densities. However, these changes were not apparent in the hUC-MSC-treated group.
Conclusion: Acute exposure to high-altitude hypoxia increased platelet counts, altered platelet morphology, and increased α-granule density and release. These effects were mitigated by hUC-MSC treatment, mediated by the protein kinase B/mitogen-activated protein kinase/extracellular-signal regulated kinase pathway. The results indicate that hUC-MSCs may represent a promising and effective approach for the prevention and treatment of acute high-altitude-associated thrombosis, providing an experimental foundation for the development of clinical applications.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.