Mary Junak, Parth Khatri, Jocelyn Zajac, Phillip Kubica, Di Yan, Huy Q Dinh, Angela L F Gibson
{"title":"空间转录组分析揭示人类烧伤创面微环境的多样性。","authors":"Mary Junak, Parth Khatri, Jocelyn Zajac, Phillip Kubica, Di Yan, Huy Q Dinh, Angela L F Gibson","doi":"10.1111/wrr.70061","DOIUrl":null,"url":null,"abstract":"<p><p>Histologic analyses of burn tissue are unable to discern reversible injury. Advanced molecular profiling, such as bulk RNA-sequencing, provides more detail; however, these methods lose spatial context. Spatial transcriptomics allows gene transcripts to be mapped to tissue locations, revealing the molecular pathways activated in the burn tissue microenvironment, where the depth of injury guides prognosis. This work demonstrates the capability of spatial transcriptomics to detect spatial gene expression patterns in burn tissue. Specifically, we show that (i) spatially variable expressed genes are distinct across different burn depth regions, which would not be identified with bulk RNA-sequencing, (ii) transcriptionally distinct burn tissue regions are defined by gene signatures associated with diverse cell types and biological pathways, and (iii) these spatial gene signatures are identified in a subset of previously published bulk samples, suggesting their potential application in large-scale and integrated studies. Caveats of this technology in burn tissue are provided to guide future research. This study highlights the promise of spatial transcriptomics to understand the human burn wound microenvironment and identify specific regions with regenerative potential that can be the target of tailored therapeutics, providing an alternative to imprecise excision and skin grafting.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":"33 4","pages":"e70061"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial Transcriptome Analysis Reveals Diverse Human Burn Wound Microenvironment.\",\"authors\":\"Mary Junak, Parth Khatri, Jocelyn Zajac, Phillip Kubica, Di Yan, Huy Q Dinh, Angela L F Gibson\",\"doi\":\"10.1111/wrr.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histologic analyses of burn tissue are unable to discern reversible injury. Advanced molecular profiling, such as bulk RNA-sequencing, provides more detail; however, these methods lose spatial context. Spatial transcriptomics allows gene transcripts to be mapped to tissue locations, revealing the molecular pathways activated in the burn tissue microenvironment, where the depth of injury guides prognosis. This work demonstrates the capability of spatial transcriptomics to detect spatial gene expression patterns in burn tissue. Specifically, we show that (i) spatially variable expressed genes are distinct across different burn depth regions, which would not be identified with bulk RNA-sequencing, (ii) transcriptionally distinct burn tissue regions are defined by gene signatures associated with diverse cell types and biological pathways, and (iii) these spatial gene signatures are identified in a subset of previously published bulk samples, suggesting their potential application in large-scale and integrated studies. Caveats of this technology in burn tissue are provided to guide future research. This study highlights the promise of spatial transcriptomics to understand the human burn wound microenvironment and identify specific regions with regenerative potential that can be the target of tailored therapeutics, providing an alternative to imprecise excision and skin grafting.</p>\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\"33 4\",\"pages\":\"e70061\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.70061\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.70061","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Spatial Transcriptome Analysis Reveals Diverse Human Burn Wound Microenvironment.
Histologic analyses of burn tissue are unable to discern reversible injury. Advanced molecular profiling, such as bulk RNA-sequencing, provides more detail; however, these methods lose spatial context. Spatial transcriptomics allows gene transcripts to be mapped to tissue locations, revealing the molecular pathways activated in the burn tissue microenvironment, where the depth of injury guides prognosis. This work demonstrates the capability of spatial transcriptomics to detect spatial gene expression patterns in burn tissue. Specifically, we show that (i) spatially variable expressed genes are distinct across different burn depth regions, which would not be identified with bulk RNA-sequencing, (ii) transcriptionally distinct burn tissue regions are defined by gene signatures associated with diverse cell types and biological pathways, and (iii) these spatial gene signatures are identified in a subset of previously published bulk samples, suggesting their potential application in large-scale and integrated studies. Caveats of this technology in burn tissue are provided to guide future research. This study highlights the promise of spatial transcriptomics to understand the human burn wound microenvironment and identify specific regions with regenerative potential that can be the target of tailored therapeutics, providing an alternative to imprecise excision and skin grafting.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.