S M Petrinec, C A Kletzing, D M Miles, S A Fuselier, I W Christopher, D Crawford, S Omar, S R Bounds, J W Bonnell, J S Halekas, G B Hospodarsky, R J Strangeway, Y Lin, K J Trattner, J W Labelle, M Øieroset, O Santolik, J Moen, K Oksavik, T K Yeoman, I H Cairns, D Mark
{"title":"串联重联和尖端电动力学侦察卫星(TRACERS)任务设计。","authors":"S M Petrinec, C A Kletzing, D M Miles, S A Fuselier, I W Christopher, D Crawford, S Omar, S R Bounds, J W Bonnell, J S Halekas, G B Hospodarsky, R J Strangeway, Y Lin, K J Trattner, J W Labelle, M Øieroset, O Santolik, J Moen, K Oksavik, T K Yeoman, I H Cairns, D Mark","doi":"10.1007/s11214-025-01185-3","DOIUrl":null,"url":null,"abstract":"<p><p>The detailed study of the global characteristics of collisionless magnetic reconnection that occurs at the magnetopause will be greatly enhanced by observations of plasma fluxes and fields within the low-altitude cusp region, as sampled by two spacecraft orbiting in tandem. The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission, a Heliophysics Small Explorer (SMEX) mission, will provide the necessary observations to enable significant progress to be made on understanding magnetic reconnection, especially in terms of its temporal versus spatial characteristics. This paper provides an overview of the TRACERS mission design and the trade studies conducted for the optimization of this design.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 5","pages":"60"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204924/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) Mission Design.\",\"authors\":\"S M Petrinec, C A Kletzing, D M Miles, S A Fuselier, I W Christopher, D Crawford, S Omar, S R Bounds, J W Bonnell, J S Halekas, G B Hospodarsky, R J Strangeway, Y Lin, K J Trattner, J W Labelle, M Øieroset, O Santolik, J Moen, K Oksavik, T K Yeoman, I H Cairns, D Mark\",\"doi\":\"10.1007/s11214-025-01185-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detailed study of the global characteristics of collisionless magnetic reconnection that occurs at the magnetopause will be greatly enhanced by observations of plasma fluxes and fields within the low-altitude cusp region, as sampled by two spacecraft orbiting in tandem. The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission, a Heliophysics Small Explorer (SMEX) mission, will provide the necessary observations to enable significant progress to be made on understanding magnetic reconnection, especially in terms of its temporal versus spatial characteristics. This paper provides an overview of the TRACERS mission design and the trade studies conducted for the optimization of this design.</p>\",\"PeriodicalId\":21902,\"journal\":{\"name\":\"Space Science Reviews\",\"volume\":\"221 5\",\"pages\":\"60\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Science Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-025-01185-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-025-01185-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) Mission Design.
The detailed study of the global characteristics of collisionless magnetic reconnection that occurs at the magnetopause will be greatly enhanced by observations of plasma fluxes and fields within the low-altitude cusp region, as sampled by two spacecraft orbiting in tandem. The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission, a Heliophysics Small Explorer (SMEX) mission, will provide the necessary observations to enable significant progress to be made on understanding magnetic reconnection, especially in terms of its temporal versus spatial characteristics. This paper provides an overview of the TRACERS mission design and the trade studies conducted for the optimization of this design.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.