Yaping Wang, Dong Wang, Chu Gao, Chuxin Zhou, Xiao Lin, Di Wang, Liu Yang, Huan Zhou, Lei Yang
{"title":"一种机械适应性强、保湿性强、可注射、可粘附的髓核修复用有机水凝胶的研制。","authors":"Yaping Wang, Dong Wang, Chu Gao, Chuxin Zhou, Xiao Lin, Di Wang, Liu Yang, Huan Zhou, Lei Yang","doi":"10.1093/rb/rbaf047","DOIUrl":null,"url":null,"abstract":"<p><p>Developing mechanical adaptable injectable gel with nucleus pulposus (NP) repairing capability for minimally invasive treatment of intervertebral disc degeneration (IDD) is of great importance in medical practice. In current work, inspired by the outcomes of polyvinyl alcohol and glycerol based injectable organohydrogel (GPG) in IDD control and the great potential of animal glue in tissue adhesion, a novel injectable and self-crosslinking adhesive organohydrogel GPG-AG was fabricated. The mechanical performance of the GPG-AG was systematically studied, possessing viscoelastic properties close to NP accompanied with strong adhesion to intervertebral disc to avoid dynamic loading induced leakage postinjection. In addition, the swelling behavior, water retention capability and degradation of the organohydrogel <i>in situ</i> was also explored. <i>In vitro</i> cellular test showed the as-fabricated organohydrogel was able to upgrade aggrecan expression while downregulate matrix metallopeptidase-13 (MMP-13) synthesis. Astoundingly, the organohydrogel revealed anti-inflammation potential of alleviating excessive reactive oxygen species, consequently creating a favored microenvironment for NP repairing. The corresponding <i>in vivo</i> study showed the outcome in intervertebral disc height index of the GPG-AG treated group after needle puncture was superior to previously reported GPG and control group. Taken together, this organohydrogel is expected to serve as a promising candidate for IDD control.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf047"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a mechanical adaptable, moisture retention capable, injectable and adhesive organohydrogel for nucleus pulposus repairing.\",\"authors\":\"Yaping Wang, Dong Wang, Chu Gao, Chuxin Zhou, Xiao Lin, Di Wang, Liu Yang, Huan Zhou, Lei Yang\",\"doi\":\"10.1093/rb/rbaf047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing mechanical adaptable injectable gel with nucleus pulposus (NP) repairing capability for minimally invasive treatment of intervertebral disc degeneration (IDD) is of great importance in medical practice. In current work, inspired by the outcomes of polyvinyl alcohol and glycerol based injectable organohydrogel (GPG) in IDD control and the great potential of animal glue in tissue adhesion, a novel injectable and self-crosslinking adhesive organohydrogel GPG-AG was fabricated. The mechanical performance of the GPG-AG was systematically studied, possessing viscoelastic properties close to NP accompanied with strong adhesion to intervertebral disc to avoid dynamic loading induced leakage postinjection. In addition, the swelling behavior, water retention capability and degradation of the organohydrogel <i>in situ</i> was also explored. <i>In vitro</i> cellular test showed the as-fabricated organohydrogel was able to upgrade aggrecan expression while downregulate matrix metallopeptidase-13 (MMP-13) synthesis. Astoundingly, the organohydrogel revealed anti-inflammation potential of alleviating excessive reactive oxygen species, consequently creating a favored microenvironment for NP repairing. The corresponding <i>in vivo</i> study showed the outcome in intervertebral disc height index of the GPG-AG treated group after needle puncture was superior to previously reported GPG and control group. Taken together, this organohydrogel is expected to serve as a promising candidate for IDD control.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbaf047\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbaf047\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Development of a mechanical adaptable, moisture retention capable, injectable and adhesive organohydrogel for nucleus pulposus repairing.
Developing mechanical adaptable injectable gel with nucleus pulposus (NP) repairing capability for minimally invasive treatment of intervertebral disc degeneration (IDD) is of great importance in medical practice. In current work, inspired by the outcomes of polyvinyl alcohol and glycerol based injectable organohydrogel (GPG) in IDD control and the great potential of animal glue in tissue adhesion, a novel injectable and self-crosslinking adhesive organohydrogel GPG-AG was fabricated. The mechanical performance of the GPG-AG was systematically studied, possessing viscoelastic properties close to NP accompanied with strong adhesion to intervertebral disc to avoid dynamic loading induced leakage postinjection. In addition, the swelling behavior, water retention capability and degradation of the organohydrogel in situ was also explored. In vitro cellular test showed the as-fabricated organohydrogel was able to upgrade aggrecan expression while downregulate matrix metallopeptidase-13 (MMP-13) synthesis. Astoundingly, the organohydrogel revealed anti-inflammation potential of alleviating excessive reactive oxygen species, consequently creating a favored microenvironment for NP repairing. The corresponding in vivo study showed the outcome in intervertebral disc height index of the GPG-AG treated group after needle puncture was superior to previously reported GPG and control group. Taken together, this organohydrogel is expected to serve as a promising candidate for IDD control.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.