Yunfei Cai, Jiali Ying, Youju Ye, Shuangshuang Wen, Renjuan Qian
{"title":"蓝光通过CRY1a调控茉莉酸合成,提高番茄茄抗葡萄灰霉病抗氧化酶活性。","authors":"Yunfei Cai, Jiali Ying, Youju Ye, Shuangshuang Wen, Renjuan Qian","doi":"10.1007/s00299-025-03559-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Blue light treatment can stimulate antioxidant enzyme activity and induce JA synthesis through CRY1a enhancing the resistance of Solanum lycopersicum to Botrytis cinerea. Light signals are prevalent in the environment and significantly influence the growth, development, plant resistance, and pathogenicity of phytopathogenic fungi. The agricultural application of spectral engineering through optimized red and blue light proportions has been used as a practical methodology for synergistically improving plant photobiology, nutritional metabolism, and environmental adaptation capabilities. However, its role in plant disease resistance has not been comprehensively explored. In our study, the pathogenicity analysis indicates that blue light significantly enhances the resistance of Solanum lycopersicum to Botrytis cinerea. Transcriptomic profiling revealed that blue light activates OPR3 and JAR1 expression, concomitant with elevated jasmonic acid biosynthesis and significantly enhanced activities of key antioxidant enzymes including peroxidase, catalase, and ascorbate peroxidase in S. lycopersicum. Furthermore, the mutation of the blue light receptor cryptochrome 1a (CRY1a) was found to enhance S. lycopersicum resistance to B. cinerea. For the pathogen B. cinerea, blue light was observed to induce DHN-melanin synthesis-related genes Bop2, Bcbrn2, Bcpks4, and Bcpks21 expression, and the development of its infection cushion was notably slower under blue light in B. cinerea. The above results indicate that blue light can control tomato gray mold by enhancing S. lycopersicum resistance and suppressing B. cinerea infection, which suggests that blue light may possess potential application value in disease management for facility-based S. lycopersicum cultivation. Our study reveals how blue light and light receptor CRY1a function in S. lycopersicum to defend necrotrophic fungal pathogens.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 7","pages":"160"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blue light regulates jasmonic acid synthesis via CRY1a and boosts antioxidant enzymes activity in Solanum lycopersicum to resist Botrytis cinerea.\",\"authors\":\"Yunfei Cai, Jiali Ying, Youju Ye, Shuangshuang Wen, Renjuan Qian\",\"doi\":\"10.1007/s00299-025-03559-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Blue light treatment can stimulate antioxidant enzyme activity and induce JA synthesis through CRY1a enhancing the resistance of Solanum lycopersicum to Botrytis cinerea. Light signals are prevalent in the environment and significantly influence the growth, development, plant resistance, and pathogenicity of phytopathogenic fungi. The agricultural application of spectral engineering through optimized red and blue light proportions has been used as a practical methodology for synergistically improving plant photobiology, nutritional metabolism, and environmental adaptation capabilities. However, its role in plant disease resistance has not been comprehensively explored. In our study, the pathogenicity analysis indicates that blue light significantly enhances the resistance of Solanum lycopersicum to Botrytis cinerea. Transcriptomic profiling revealed that blue light activates OPR3 and JAR1 expression, concomitant with elevated jasmonic acid biosynthesis and significantly enhanced activities of key antioxidant enzymes including peroxidase, catalase, and ascorbate peroxidase in S. lycopersicum. Furthermore, the mutation of the blue light receptor cryptochrome 1a (CRY1a) was found to enhance S. lycopersicum resistance to B. cinerea. For the pathogen B. cinerea, blue light was observed to induce DHN-melanin synthesis-related genes Bop2, Bcbrn2, Bcpks4, and Bcpks21 expression, and the development of its infection cushion was notably slower under blue light in B. cinerea. The above results indicate that blue light can control tomato gray mold by enhancing S. lycopersicum resistance and suppressing B. cinerea infection, which suggests that blue light may possess potential application value in disease management for facility-based S. lycopersicum cultivation. Our study reveals how blue light and light receptor CRY1a function in S. lycopersicum to defend necrotrophic fungal pathogens.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 7\",\"pages\":\"160\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-025-03559-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03559-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Blue light regulates jasmonic acid synthesis via CRY1a and boosts antioxidant enzymes activity in Solanum lycopersicum to resist Botrytis cinerea.
Key message: Blue light treatment can stimulate antioxidant enzyme activity and induce JA synthesis through CRY1a enhancing the resistance of Solanum lycopersicum to Botrytis cinerea. Light signals are prevalent in the environment and significantly influence the growth, development, plant resistance, and pathogenicity of phytopathogenic fungi. The agricultural application of spectral engineering through optimized red and blue light proportions has been used as a practical methodology for synergistically improving plant photobiology, nutritional metabolism, and environmental adaptation capabilities. However, its role in plant disease resistance has not been comprehensively explored. In our study, the pathogenicity analysis indicates that blue light significantly enhances the resistance of Solanum lycopersicum to Botrytis cinerea. Transcriptomic profiling revealed that blue light activates OPR3 and JAR1 expression, concomitant with elevated jasmonic acid biosynthesis and significantly enhanced activities of key antioxidant enzymes including peroxidase, catalase, and ascorbate peroxidase in S. lycopersicum. Furthermore, the mutation of the blue light receptor cryptochrome 1a (CRY1a) was found to enhance S. lycopersicum resistance to B. cinerea. For the pathogen B. cinerea, blue light was observed to induce DHN-melanin synthesis-related genes Bop2, Bcbrn2, Bcpks4, and Bcpks21 expression, and the development of its infection cushion was notably slower under blue light in B. cinerea. The above results indicate that blue light can control tomato gray mold by enhancing S. lycopersicum resistance and suppressing B. cinerea infection, which suggests that blue light may possess potential application value in disease management for facility-based S. lycopersicum cultivation. Our study reveals how blue light and light receptor CRY1a function in S. lycopersicum to defend necrotrophic fungal pathogens.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.