Jaehan Shin, Wonjae Jeong, Hyeon-Ji Yang, Mun-Il Ahn, Kwang-Hyung Kim
{"title":"利用神经网络了解季节天气动态对水稻病害发生的影响——以穗瘟病和谷粒腐病为例","authors":"Jaehan Shin, Wonjae Jeong, Hyeon-Ji Yang, Mun-Il Ahn, Kwang-Hyung Kim","doi":"10.1094/PHYTO-01-25-0004-FI","DOIUrl":null,"url":null,"abstract":"<p><p>Panicle blast (PB) and grain rot (GR) are two major rice diseases that directly affect panicles and result in severe yield losses worldwide. This study introduces a novel data-driven approach to understanding the impact of seasonal weather dynamics on the occurrence of these diseases using neural networks. By relying solely on meteorological data, the proposed method demonstrates the potential to elucidate hidden relationships between meteorological conditions and disease occurrence. In this study, time-series data comprising seven meteorological variables over 180 days until the peak incidence dates of each disease were used to train a long short-term memory-based model. By applying the holdout method, the prediction model achieved maximum test accuracies of 64.9 and 68.0% for the PB and GR, respectively. Subsequently, a gradient-based analysis further reinforced the reliability of the resulting models by showing consistency with previous findings, in which rainfall and wind speed were frequently identified as critical variables for disease prediction. The temporal dynamics of individual meteorological variables, contributing to disease occurrence, were also revealed from the gradient-based analysis. Overall, our results emphasize the reliability of deep learning models when predicting disease occurrence using only meteorological data, making a substantial contribution to the crop disease prediction system development, and the scalability of applying the same method to other crop diseases when sufficient data are available.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"PHYTO01250004FI"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Impact of Seasonal Weather Dynamics on Rice Disease Occurrence Using Neural Networks: A Case Study of Panicle Blast and Grain Rot.\",\"authors\":\"Jaehan Shin, Wonjae Jeong, Hyeon-Ji Yang, Mun-Il Ahn, Kwang-Hyung Kim\",\"doi\":\"10.1094/PHYTO-01-25-0004-FI\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Panicle blast (PB) and grain rot (GR) are two major rice diseases that directly affect panicles and result in severe yield losses worldwide. This study introduces a novel data-driven approach to understanding the impact of seasonal weather dynamics on the occurrence of these diseases using neural networks. By relying solely on meteorological data, the proposed method demonstrates the potential to elucidate hidden relationships between meteorological conditions and disease occurrence. In this study, time-series data comprising seven meteorological variables over 180 days until the peak incidence dates of each disease were used to train a long short-term memory-based model. By applying the holdout method, the prediction model achieved maximum test accuracies of 64.9 and 68.0% for the PB and GR, respectively. Subsequently, a gradient-based analysis further reinforced the reliability of the resulting models by showing consistency with previous findings, in which rainfall and wind speed were frequently identified as critical variables for disease prediction. The temporal dynamics of individual meteorological variables, contributing to disease occurrence, were also revealed from the gradient-based analysis. Overall, our results emphasize the reliability of deep learning models when predicting disease occurrence using only meteorological data, making a substantial contribution to the crop disease prediction system development, and the scalability of applying the same method to other crop diseases when sufficient data are available.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":\" \",\"pages\":\"PHYTO01250004FI\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-01-25-0004-FI\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-01-25-0004-FI","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Understanding the Impact of Seasonal Weather Dynamics on Rice Disease Occurrence Using Neural Networks: A Case Study of Panicle Blast and Grain Rot.
Panicle blast (PB) and grain rot (GR) are two major rice diseases that directly affect panicles and result in severe yield losses worldwide. This study introduces a novel data-driven approach to understanding the impact of seasonal weather dynamics on the occurrence of these diseases using neural networks. By relying solely on meteorological data, the proposed method demonstrates the potential to elucidate hidden relationships between meteorological conditions and disease occurrence. In this study, time-series data comprising seven meteorological variables over 180 days until the peak incidence dates of each disease were used to train a long short-term memory-based model. By applying the holdout method, the prediction model achieved maximum test accuracies of 64.9 and 68.0% for the PB and GR, respectively. Subsequently, a gradient-based analysis further reinforced the reliability of the resulting models by showing consistency with previous findings, in which rainfall and wind speed were frequently identified as critical variables for disease prediction. The temporal dynamics of individual meteorological variables, contributing to disease occurrence, were also revealed from the gradient-based analysis. Overall, our results emphasize the reliability of deep learning models when predicting disease occurrence using only meteorological data, making a substantial contribution to the crop disease prediction system development, and the scalability of applying the same method to other crop diseases when sufficient data are available.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.