{"title":"解读植物对内涝的反应:从胁迫信号到分子机制及其未来意义。","authors":"Muhammad Mudasir, Ali Shahzad","doi":"10.1007/s11103-025-01611-8","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change and global warming drastically alter ecosystems, intensifying extreme weather events such as heavy rainfall and glacier melting, leading to increased soil flooding and threatening agriculture. Waterlogging, a direct consequence of prolonged soil saturation, severely affects plant growth by causing hypoxia, impaired nutrient uptake, photosynthesis inhibition, energy depletion, and microbiome disturbances, ultimately leading to plant mortality. Despite research progress in mitigating waterlogging stress, the molecular mechanisms underlying plant perception and their subsequent adaptive responses remain largely unclear. Recent advancements in molecular, biochemical, and multi-omics technologies have enabled significant progress in understanding the molecular mechanisms of plant responses to stress conditions. In this review, we highlight the metabolic pathways and key genes that could be targeted to enhance waterlogging tolerance and discuss how advanced techniques can be implemented to understand waterlogging responses and develop resistant cultivars. We review molecular insights into how ethylene and hypoxia signaling pathways trigger waterlogging responses and highlight key factors involved in energy metabolism and phytohormone signaling pathways, along with possible directions for further study.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"78"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding plant responses to waterlogging: from stress signals to molecular mechanisms and their future implications.\",\"authors\":\"Muhammad Mudasir, Ali Shahzad\",\"doi\":\"10.1007/s11103-025-01611-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change and global warming drastically alter ecosystems, intensifying extreme weather events such as heavy rainfall and glacier melting, leading to increased soil flooding and threatening agriculture. Waterlogging, a direct consequence of prolonged soil saturation, severely affects plant growth by causing hypoxia, impaired nutrient uptake, photosynthesis inhibition, energy depletion, and microbiome disturbances, ultimately leading to plant mortality. Despite research progress in mitigating waterlogging stress, the molecular mechanisms underlying plant perception and their subsequent adaptive responses remain largely unclear. Recent advancements in molecular, biochemical, and multi-omics technologies have enabled significant progress in understanding the molecular mechanisms of plant responses to stress conditions. In this review, we highlight the metabolic pathways and key genes that could be targeted to enhance waterlogging tolerance and discuss how advanced techniques can be implemented to understand waterlogging responses and develop resistant cultivars. We review molecular insights into how ethylene and hypoxia signaling pathways trigger waterlogging responses and highlight key factors involved in energy metabolism and phytohormone signaling pathways, along with possible directions for further study.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 4\",\"pages\":\"78\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01611-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01611-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding plant responses to waterlogging: from stress signals to molecular mechanisms and their future implications.
Climate change and global warming drastically alter ecosystems, intensifying extreme weather events such as heavy rainfall and glacier melting, leading to increased soil flooding and threatening agriculture. Waterlogging, a direct consequence of prolonged soil saturation, severely affects plant growth by causing hypoxia, impaired nutrient uptake, photosynthesis inhibition, energy depletion, and microbiome disturbances, ultimately leading to plant mortality. Despite research progress in mitigating waterlogging stress, the molecular mechanisms underlying plant perception and their subsequent adaptive responses remain largely unclear. Recent advancements in molecular, biochemical, and multi-omics technologies have enabled significant progress in understanding the molecular mechanisms of plant responses to stress conditions. In this review, we highlight the metabolic pathways and key genes that could be targeted to enhance waterlogging tolerance and discuss how advanced techniques can be implemented to understand waterlogging responses and develop resistant cultivars. We review molecular insights into how ethylene and hypoxia signaling pathways trigger waterlogging responses and highlight key factors involved in energy metabolism and phytohormone signaling pathways, along with possible directions for further study.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.