jar1-1突变体的基因外二位点突变抑制了对光周期胁迫的反应,而不依赖于茉莉酸。

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anne Cortleven, Silvia Nitschke, Venja Roeber-Terstegen, Cornelia Herrfurth, Ivo Feussner, Thomas Schmülling
{"title":"jar1-1突变体的基因外二位点突变抑制了对光周期胁迫的反应,而不依赖于茉莉酸。","authors":"Anne Cortleven, Silvia Nitschke, Venja Roeber-Terstegen, Cornelia Herrfurth, Ivo Feussner, Thomas Schmülling","doi":"10.1007/s11103-025-01602-9","DOIUrl":null,"url":null,"abstract":"<p><p>Extension of the light period causes photoperiod stress in Arabidopsis thaliana. The photoperiod stress phenotype is characterized by an induction of stress and cell death marker genes, the formation of reactive oxygen species (ROS) and enhanced formation of jasmonates during the night following the extended light period. Previously, experiments had shown that the jar1-1 mutant, carrying a point mutation in the jasmonoyl-isoleucine (JA-Ile) biosynthesis gene JAR1, showed a strongly reduced stress phenotype suggesting that JA-Ile is required for the stress response. Here, we have analyzed the roles of JA-Ile and JAR1 in more detail. While jar1-1 reduced the photoperiod stress phenotype indicating that JAR1 is required for the response to photoperiod stress, mutation of the ALLENE OXIDE SYNTHETASE (AOS) jasmonate biosynthesis gene did not rescue the stress phenotype. Further, analysis of jasmonate signaling mutants did not indicate their broad resistance to photoperiod stress. Unexpectedly, other JAR1 mutant alleles like jar1-11 and fin219-2 did not alleviate the photoperiod stress phenotype. Genetic analysis revealed that a recessive unlinked second-site mutation in the jar1-1 mutant background is responsible for the suppression of the photoperiod stress response. Taken together, these results suggest that JA-Ile is less important for the response to photoperiod stress than indicated by previous results.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"79"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206676/pdf/","citationCount":"0","resultStr":"{\"title\":\"An extragenic second-site mutation in the jar1-1 mutant suppresses the response to photoperiod stress independent of jasmonic acid.\",\"authors\":\"Anne Cortleven, Silvia Nitschke, Venja Roeber-Terstegen, Cornelia Herrfurth, Ivo Feussner, Thomas Schmülling\",\"doi\":\"10.1007/s11103-025-01602-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extension of the light period causes photoperiod stress in Arabidopsis thaliana. The photoperiod stress phenotype is characterized by an induction of stress and cell death marker genes, the formation of reactive oxygen species (ROS) and enhanced formation of jasmonates during the night following the extended light period. Previously, experiments had shown that the jar1-1 mutant, carrying a point mutation in the jasmonoyl-isoleucine (JA-Ile) biosynthesis gene JAR1, showed a strongly reduced stress phenotype suggesting that JA-Ile is required for the stress response. Here, we have analyzed the roles of JA-Ile and JAR1 in more detail. While jar1-1 reduced the photoperiod stress phenotype indicating that JAR1 is required for the response to photoperiod stress, mutation of the ALLENE OXIDE SYNTHETASE (AOS) jasmonate biosynthesis gene did not rescue the stress phenotype. Further, analysis of jasmonate signaling mutants did not indicate their broad resistance to photoperiod stress. Unexpectedly, other JAR1 mutant alleles like jar1-11 and fin219-2 did not alleviate the photoperiod stress phenotype. Genetic analysis revealed that a recessive unlinked second-site mutation in the jar1-1 mutant background is responsible for the suppression of the photoperiod stress response. Taken together, these results suggest that JA-Ile is less important for the response to photoperiod stress than indicated by previous results.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 4\",\"pages\":\"79\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01602-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01602-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

光期延长引起拟南芥的光期胁迫。光周期胁迫表型的特征是诱导应激和细胞死亡标记基因,形成活性氧(ROS),并在延长光照期后的夜间增强茉莉酸盐的形成。先前的实验表明,携带茉莉异亮氨酸(JA-Ile)生物合成基因JAR1点突变的JAR1 -1突变体表现出强烈降低的胁迫表型,这表明JA-Ile是胁迫反应所必需的。在这里,我们更详细地分析了JA-Ile和JAR1的作用。JAR1 -1降低了光周期胁迫表型,表明JAR1是响应光周期胁迫所必需的,而ALLENE OXIDE SYNTHETASE (AOS)茉莉酸生物合成基因的突变并没有挽救胁迫表型。此外,茉莉酸信号突变体的分析并没有显示出它们对光周期胁迫的广泛抗性。出乎意料的是,其他JAR1突变等位基因如JAR1 -11和fin219-2并没有减轻光周期胁迫表型。遗传分析表明,jar1-1突变背景中的隐性非连锁第二位点突变是抑制光周期胁迫反应的原因。综上所述,这些结果表明JA-Ile对光周期胁迫的反应并不像以前的结果那样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extragenic second-site mutation in the jar1-1 mutant suppresses the response to photoperiod stress independent of jasmonic acid.

Extension of the light period causes photoperiod stress in Arabidopsis thaliana. The photoperiod stress phenotype is characterized by an induction of stress and cell death marker genes, the formation of reactive oxygen species (ROS) and enhanced formation of jasmonates during the night following the extended light period. Previously, experiments had shown that the jar1-1 mutant, carrying a point mutation in the jasmonoyl-isoleucine (JA-Ile) biosynthesis gene JAR1, showed a strongly reduced stress phenotype suggesting that JA-Ile is required for the stress response. Here, we have analyzed the roles of JA-Ile and JAR1 in more detail. While jar1-1 reduced the photoperiod stress phenotype indicating that JAR1 is required for the response to photoperiod stress, mutation of the ALLENE OXIDE SYNTHETASE (AOS) jasmonate biosynthesis gene did not rescue the stress phenotype. Further, analysis of jasmonate signaling mutants did not indicate their broad resistance to photoperiod stress. Unexpectedly, other JAR1 mutant alleles like jar1-11 and fin219-2 did not alleviate the photoperiod stress phenotype. Genetic analysis revealed that a recessive unlinked second-site mutation in the jar1-1 mutant background is responsible for the suppression of the photoperiod stress response. Taken together, these results suggest that JA-Ile is less important for the response to photoperiod stress than indicated by previous results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信