靶向磷脂代谢是有效的听力保护策略。

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Huanyu Mao, Wenli Ni, Lupeng Ma, Xiang Li, Yanping Zhang, Yuzheng Zhao, Wenyan Li, Huawei Li, Yan Chen
{"title":"靶向磷脂代谢是有效的听力保护策略。","authors":"Huanyu Mao, Wenli Ni, Lupeng Ma, Xiang Li, Yanping Zhang, Yuzheng Zhao, Wenyan Li, Huawei Li, Yan Chen","doi":"10.1007/s12264-025-01433-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cochlear hair cell (HC) damage is a primary cause of sensorineural hearing loss. In this study, we performed metabolomic profiling of cochlear sensory epithelium following neomycin-induced HC injury and identified elevated arginine metabolism as a key metabolic characteristic of damaged HCs. Using a highly sensitive and specific biosensor, we confirmed that injury induced an increase in arginine levels within cochlear HCs. By manipulating the levels of arginine and its downstream metabolites, we discovered that unmetabolized arginine exerts a strong protective effect on cochlear HCs, independent of its downstream metabolites, such as nitric oxide. Furthermore, integrated metabolomic and transcriptomic analyses revealed that arginine plays a critical role in reprogramming phospholipid metabolism. Arginine supplementation enhanced membrane phospholipid saturation through the Lands cycle and de novo lipogenesis, and protected HCs from phospholipid peroxidation-induced membrane damage and subsequent cell death. Notably, arginine supplementation protected hearing from both noise- and aminoglycoside-induced injury in mice. These findings underscore the role of unmetabolized arginine in modulating phospholipid metabolism and preventing membrane damage in cochlear HCs, highlighting that targeting phospholipid metabolism is an effective hearing protection strategy.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting Phospholipid Metabolism as an Effective Hearing Protection Strategy.\",\"authors\":\"Huanyu Mao, Wenli Ni, Lupeng Ma, Xiang Li, Yanping Zhang, Yuzheng Zhao, Wenyan Li, Huawei Li, Yan Chen\",\"doi\":\"10.1007/s12264-025-01433-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cochlear hair cell (HC) damage is a primary cause of sensorineural hearing loss. In this study, we performed metabolomic profiling of cochlear sensory epithelium following neomycin-induced HC injury and identified elevated arginine metabolism as a key metabolic characteristic of damaged HCs. Using a highly sensitive and specific biosensor, we confirmed that injury induced an increase in arginine levels within cochlear HCs. By manipulating the levels of arginine and its downstream metabolites, we discovered that unmetabolized arginine exerts a strong protective effect on cochlear HCs, independent of its downstream metabolites, such as nitric oxide. Furthermore, integrated metabolomic and transcriptomic analyses revealed that arginine plays a critical role in reprogramming phospholipid metabolism. Arginine supplementation enhanced membrane phospholipid saturation through the Lands cycle and de novo lipogenesis, and protected HCs from phospholipid peroxidation-induced membrane damage and subsequent cell death. Notably, arginine supplementation protected hearing from both noise- and aminoglycoside-induced injury in mice. These findings underscore the role of unmetabolized arginine in modulating phospholipid metabolism and preventing membrane damage in cochlear HCs, highlighting that targeting phospholipid metabolism is an effective hearing protection strategy.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01433-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01433-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

耳蜗毛细胞损伤是感音神经性听力损失的主要原因。在这项研究中,我们对新霉素诱导的HC损伤后的耳蜗感觉上皮进行了代谢组学分析,并确定精氨酸代谢升高是受损HC的关键代谢特征。使用高灵敏度和特异性的生物传感器,我们证实了损伤引起耳蜗hc内精氨酸水平的增加。通过控制精氨酸及其下游代谢物的水平,我们发现未代谢的精氨酸对耳蜗hc具有很强的保护作用,而不依赖于其下游代谢物,如一氧化氮。此外,综合代谢组学和转录组学分析表明,精氨酸在磷脂代谢重编程中起着关键作用。补充精氨酸可通过Lands循环和新生脂肪生成增强膜磷脂饱和度,并保护hc免受磷脂过氧化诱导的膜损伤和随后的细胞死亡。值得注意的是,补充精氨酸可以保护小鼠的听力免受噪音和氨基糖苷引起的损伤。这些发现强调了未代谢的精氨酸在调节磷脂代谢和防止耳蜗hc膜损伤中的作用,强调了针对磷脂代谢是一种有效的听力保护策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting Phospholipid Metabolism as an Effective Hearing Protection Strategy.

Cochlear hair cell (HC) damage is a primary cause of sensorineural hearing loss. In this study, we performed metabolomic profiling of cochlear sensory epithelium following neomycin-induced HC injury and identified elevated arginine metabolism as a key metabolic characteristic of damaged HCs. Using a highly sensitive and specific biosensor, we confirmed that injury induced an increase in arginine levels within cochlear HCs. By manipulating the levels of arginine and its downstream metabolites, we discovered that unmetabolized arginine exerts a strong protective effect on cochlear HCs, independent of its downstream metabolites, such as nitric oxide. Furthermore, integrated metabolomic and transcriptomic analyses revealed that arginine plays a critical role in reprogramming phospholipid metabolism. Arginine supplementation enhanced membrane phospholipid saturation through the Lands cycle and de novo lipogenesis, and protected HCs from phospholipid peroxidation-induced membrane damage and subsequent cell death. Notably, arginine supplementation protected hearing from both noise- and aminoglycoside-induced injury in mice. These findings underscore the role of unmetabolized arginine in modulating phospholipid metabolism and preventing membrane damage in cochlear HCs, highlighting that targeting phospholipid metabolism is an effective hearing protection strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信