Md Sadique Hussain, Mudasir Maqbool, Mohammed M Arab, Amita Joshi Rana, Sumel Ashique, Yumna Khan, Vikas Jakhmola, Gaurav Gupta
{"title":"转变血友病管理:来自基因治疗临床试验的经验教训。","authors":"Md Sadique Hussain, Mudasir Maqbool, Mohammed M Arab, Amita Joshi Rana, Sumel Ashique, Yumna Khan, Vikas Jakhmola, Gaurav Gupta","doi":"10.1007/s12033-025-01464-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapy signifies a transformative revolution in hemophilia care, providing the possibility for sustained endogenous synthesis of coagulation factors and limiting the need for external factor supplementation. Preliminary experiments in hemophilia B via adeno-associated viral (AAV) vectors encountered constraints owing to immunological reactions and temporary translation. Progress in vector technology, particularly via self-complementary AAV innovation and codon-optimized mini-factor IX (FIX) concepts, has markedly improved transduction performance and prolonged FIX activity. Initial investigations have shown encouraging outcomes, with certain individuals sustaining consistent FIX expressions for more than 8 years; hence, decreasing yearly bleeding incidents and requiring preventive therapy. The development of gene therapy for hemophilia A has encountered substantial obstacles owing to the enormous size of the factor VIII (FVIII) gene. The recent experiments using AAV serotypes 5 (AAV5) vectors that encode B-domain-deleted FVIII constructs have shown sustained levels along with substantial decreases in hemorrhage incidents. Research has shown prolonged FVIII expression, with some individuals attaining almost normal coagulation efficiency. Phase III studies have validated long-term effectiveness and safety, with transient transaminase elevations being the most common adverse event. Notwithstanding these advancements, difficulties persist, including immunological reactions to vector capsids, hepatotoxicity, and unpredictability in translation levels. Innovative approaches including lentiviral vectors, gene-editing technologies, and novel customized connection strategies demonstrate possibilities for enhancing the effectiveness of gene therapy. Continuous clinical research and improvement in delivery systems will be crucial in substantiating gene therapy as a definitive approach for hemophilia.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Hemophilia Management: Lessons from Gene Therapy Clinical Trials.\",\"authors\":\"Md Sadique Hussain, Mudasir Maqbool, Mohammed M Arab, Amita Joshi Rana, Sumel Ashique, Yumna Khan, Vikas Jakhmola, Gaurav Gupta\",\"doi\":\"10.1007/s12033-025-01464-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene therapy signifies a transformative revolution in hemophilia care, providing the possibility for sustained endogenous synthesis of coagulation factors and limiting the need for external factor supplementation. Preliminary experiments in hemophilia B via adeno-associated viral (AAV) vectors encountered constraints owing to immunological reactions and temporary translation. Progress in vector technology, particularly via self-complementary AAV innovation and codon-optimized mini-factor IX (FIX) concepts, has markedly improved transduction performance and prolonged FIX activity. Initial investigations have shown encouraging outcomes, with certain individuals sustaining consistent FIX expressions for more than 8 years; hence, decreasing yearly bleeding incidents and requiring preventive therapy. The development of gene therapy for hemophilia A has encountered substantial obstacles owing to the enormous size of the factor VIII (FVIII) gene. The recent experiments using AAV serotypes 5 (AAV5) vectors that encode B-domain-deleted FVIII constructs have shown sustained levels along with substantial decreases in hemorrhage incidents. Research has shown prolonged FVIII expression, with some individuals attaining almost normal coagulation efficiency. Phase III studies have validated long-term effectiveness and safety, with transient transaminase elevations being the most common adverse event. Notwithstanding these advancements, difficulties persist, including immunological reactions to vector capsids, hepatotoxicity, and unpredictability in translation levels. Innovative approaches including lentiviral vectors, gene-editing technologies, and novel customized connection strategies demonstrate possibilities for enhancing the effectiveness of gene therapy. Continuous clinical research and improvement in delivery systems will be crucial in substantiating gene therapy as a definitive approach for hemophilia.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-025-01464-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01464-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transforming Hemophilia Management: Lessons from Gene Therapy Clinical Trials.
Gene therapy signifies a transformative revolution in hemophilia care, providing the possibility for sustained endogenous synthesis of coagulation factors and limiting the need for external factor supplementation. Preliminary experiments in hemophilia B via adeno-associated viral (AAV) vectors encountered constraints owing to immunological reactions and temporary translation. Progress in vector technology, particularly via self-complementary AAV innovation and codon-optimized mini-factor IX (FIX) concepts, has markedly improved transduction performance and prolonged FIX activity. Initial investigations have shown encouraging outcomes, with certain individuals sustaining consistent FIX expressions for more than 8 years; hence, decreasing yearly bleeding incidents and requiring preventive therapy. The development of gene therapy for hemophilia A has encountered substantial obstacles owing to the enormous size of the factor VIII (FVIII) gene. The recent experiments using AAV serotypes 5 (AAV5) vectors that encode B-domain-deleted FVIII constructs have shown sustained levels along with substantial decreases in hemorrhage incidents. Research has shown prolonged FVIII expression, with some individuals attaining almost normal coagulation efficiency. Phase III studies have validated long-term effectiveness and safety, with transient transaminase elevations being the most common adverse event. Notwithstanding these advancements, difficulties persist, including immunological reactions to vector capsids, hepatotoxicity, and unpredictability in translation levels. Innovative approaches including lentiviral vectors, gene-editing technologies, and novel customized connection strategies demonstrate possibilities for enhancing the effectiveness of gene therapy. Continuous clinical research and improvement in delivery systems will be crucial in substantiating gene therapy as a definitive approach for hemophilia.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.