{"title":"固体电解质与阳极材料界面优化策略综述。","authors":"Dandan Wang, Xinyang Wu, Yongpeng Ren, Yaru Li, Xiaolin Xie, Xiqiang Ma, Ihar Razanau, Xuemin Chen, Junhao Lu, Kunming Pan","doi":"10.1039/d5na00286a","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing demand for high-performance power batteries in electric vehicles, low-altitude economy, military applications, and other fields, existing liquid electrolyte-based battery technologies are gradually becoming incapable of meeting the energy density and safety requirements. New battery systems based on solid electrolytes are the main candidate materials for future power batteries owing to their high safety and energy density. Thus far, researchers have conducted extensive studies on the ionic/electronic transfer mechanisms of solid electrolytes and electrode materials, as well as the cooperative effects and interface issues between them. Although much progress has been made, the practical application of solid-state batteries is still severely limited by the high interface impedance between the solid electrolyte and the anode. This impedance stems from incompatible physical and chemical properties and dynamic interface evolution. This paper focuses on the latest progress in the interface engineering strategies of solid electrolytes and anodes and systematically analyzes the cooperative coupling effect between charge transfer dynamics and mechanical stability at the interface. This review provides insights into the future research in this field, aiming to offer a new perspective to enhance our understanding of solid-state lithium batteries, thereby facilitating their more optimal design and promoting their practical applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203239/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of interface optimization strategies for solid electrolytes and anode materials.\",\"authors\":\"Dandan Wang, Xinyang Wu, Yongpeng Ren, Yaru Li, Xiaolin Xie, Xiqiang Ma, Ihar Razanau, Xuemin Chen, Junhao Lu, Kunming Pan\",\"doi\":\"10.1039/d5na00286a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing demand for high-performance power batteries in electric vehicles, low-altitude economy, military applications, and other fields, existing liquid electrolyte-based battery technologies are gradually becoming incapable of meeting the energy density and safety requirements. New battery systems based on solid electrolytes are the main candidate materials for future power batteries owing to their high safety and energy density. Thus far, researchers have conducted extensive studies on the ionic/electronic transfer mechanisms of solid electrolytes and electrode materials, as well as the cooperative effects and interface issues between them. Although much progress has been made, the practical application of solid-state batteries is still severely limited by the high interface impedance between the solid electrolyte and the anode. This impedance stems from incompatible physical and chemical properties and dynamic interface evolution. This paper focuses on the latest progress in the interface engineering strategies of solid electrolytes and anodes and systematically analyzes the cooperative coupling effect between charge transfer dynamics and mechanical stability at the interface. This review provides insights into the future research in this field, aiming to offer a new perspective to enhance our understanding of solid-state lithium batteries, thereby facilitating their more optimal design and promoting their practical applications.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00286a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00286a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A review of interface optimization strategies for solid electrolytes and anode materials.
With the increasing demand for high-performance power batteries in electric vehicles, low-altitude economy, military applications, and other fields, existing liquid electrolyte-based battery technologies are gradually becoming incapable of meeting the energy density and safety requirements. New battery systems based on solid electrolytes are the main candidate materials for future power batteries owing to their high safety and energy density. Thus far, researchers have conducted extensive studies on the ionic/electronic transfer mechanisms of solid electrolytes and electrode materials, as well as the cooperative effects and interface issues between them. Although much progress has been made, the practical application of solid-state batteries is still severely limited by the high interface impedance between the solid electrolyte and the anode. This impedance stems from incompatible physical and chemical properties and dynamic interface evolution. This paper focuses on the latest progress in the interface engineering strategies of solid electrolytes and anodes and systematically analyzes the cooperative coupling effect between charge transfer dynamics and mechanical stability at the interface. This review provides insights into the future research in this field, aiming to offer a new perspective to enhance our understanding of solid-state lithium batteries, thereby facilitating their more optimal design and promoting their practical applications.