基于多组学数据的高分辨率质谱(MALDI (+)-TOF MS和ESI(±)-Orbitrap MS)诊断筛查。

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Camila Medeiros de Almeida, Larissa Campos Motta, Gabriely Silveira Folli, Juliana de Mello do Carmo, Andréa Rodrigues Chaves, José Brango-Vanegas, Rosiane Andrade da Costa, Octavio Luiz Franco, Frederico Garcia Pinto, Denise Coutinho Endringer, Paulo Roberto Filgueiras, Valério Garrone Barauna, José Geraldo Mill, Wanderson Romão
{"title":"基于多组学数据的高分辨率质谱(MALDI (+)-TOF MS和ESI(±)-Orbitrap MS)诊断筛查。","authors":"Camila Medeiros de Almeida, Larissa Campos Motta, Gabriely Silveira Folli, Juliana de Mello do Carmo, Andréa Rodrigues Chaves, José Brango-Vanegas, Rosiane Andrade da Costa, Octavio Luiz Franco, Frederico Garcia Pinto, Denise Coutinho Endringer, Paulo Roberto Filgueiras, Valério Garrone Barauna, José Geraldo Mill, Wanderson Romão","doi":"10.1007/s11306-025-02299-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The urgency for rapid diagnostics during the COVID-19 pandemic in 2020 highlighted the importance of effective methods such as RT-PCR, however multiomics analyses offer a more comprehensive approach, going beyond simple viral detection to the biological understanding of the disease.</p><p><strong>Objective: </strong>this study aimed to devise an effective multiomic method for differentiating SARS-CoV-2-infected patients, leveraging serum lipid and proteomic profiles.</p><p><strong>Method: </strong>Electrospray ionization mass spectrometry (ESI-MS) with an Orbitrap analyzer was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for test ELISA for COVID-19). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for test ELISA for SARS-CoV-2). After processing MS data and selecting variables, statistical analyses such as the Volcano plot, Heatmap, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM) were performed to distinguish the most relevant variables to classify samples that presented or did not present antibodies for SARS-CoV-2.</p><p><strong>Results: </strong>Lipidomics analysis using ESI(±)-Orbitrap MS and SVM models, showed sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% for positive and negative ion mode analyses, respectively. For Proteomics analyses using MALDI(+)-TOF MS, the linear PLS-DA model demonstrated an accuracy of 99.10%.</p><p><strong>Conclusion: </strong>both ESI-Orbitrap MS and MALDI-TOF MS techniques, combined with chemometrics, demonstrated promising alternatives with high sensitivity and specificity for distinguishing the immune response. However, the investigation of the lipid profile by direct infusion ESI MS represents a valuable and efficient approach that reinforces the application of mass spectrometry in clinical diagnostics, particularly when aiming for high-throughput and minimally invasive analysis.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 4","pages":"94"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic screening of COVID-19 based on multiomics data by high-resolution mass spectrometry (MALDI (+)-TOF MS and ESI(±)-Orbitrap MS).\",\"authors\":\"Camila Medeiros de Almeida, Larissa Campos Motta, Gabriely Silveira Folli, Juliana de Mello do Carmo, Andréa Rodrigues Chaves, José Brango-Vanegas, Rosiane Andrade da Costa, Octavio Luiz Franco, Frederico Garcia Pinto, Denise Coutinho Endringer, Paulo Roberto Filgueiras, Valério Garrone Barauna, José Geraldo Mill, Wanderson Romão\",\"doi\":\"10.1007/s11306-025-02299-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The urgency for rapid diagnostics during the COVID-19 pandemic in 2020 highlighted the importance of effective methods such as RT-PCR, however multiomics analyses offer a more comprehensive approach, going beyond simple viral detection to the biological understanding of the disease.</p><p><strong>Objective: </strong>this study aimed to devise an effective multiomic method for differentiating SARS-CoV-2-infected patients, leveraging serum lipid and proteomic profiles.</p><p><strong>Method: </strong>Electrospray ionization mass spectrometry (ESI-MS) with an Orbitrap analyzer was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for test ELISA for COVID-19). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for test ELISA for SARS-CoV-2). After processing MS data and selecting variables, statistical analyses such as the Volcano plot, Heatmap, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM) were performed to distinguish the most relevant variables to classify samples that presented or did not present antibodies for SARS-CoV-2.</p><p><strong>Results: </strong>Lipidomics analysis using ESI(±)-Orbitrap MS and SVM models, showed sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% for positive and negative ion mode analyses, respectively. For Proteomics analyses using MALDI(+)-TOF MS, the linear PLS-DA model demonstrated an accuracy of 99.10%.</p><p><strong>Conclusion: </strong>both ESI-Orbitrap MS and MALDI-TOF MS techniques, combined with chemometrics, demonstrated promising alternatives with high sensitivity and specificity for distinguishing the immune response. However, the investigation of the lipid profile by direct infusion ESI MS represents a valuable and efficient approach that reinforces the application of mass spectrometry in clinical diagnostics, particularly when aiming for high-throughput and minimally invasive analysis.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":\"21 4\",\"pages\":\"94\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-025-02299-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02299-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

导读:在2020年2019冠状病毒病大流行期间,快速诊断的紧迫性突出了RT-PCR等有效方法的重要性,然而,多组学分析提供了一种更全面的方法,超越了简单的病毒检测,对疾病的生物学理解。目的:本研究旨在设计一种有效的多组学方法,利用血脂和蛋白质组学特征来区分sars - cov -2感染患者。方法:采用电喷雾电离质谱法(ESI-MS)和Orbitrap分析仪对239份血清(COVID-19酶联免疫吸附试验阳性119份,阴性120份)进行血脂分析。采用基质辅助激光解吸/电离飞行时间质谱法(MALDI-TOF MS)分析了300份血清样品(150份阳性和150份阴性)的蛋白质组学特征。在对质谱数据进行处理和选择变量后,采用火山图、热图、主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)等统计分析方法区分最相关的变量,对存在或不存在SARS-CoV-2抗体的样本进行分类。结果:采用ESI(±)-Orbitrap MS和SVM模型进行脂质组学分析,正负离子模式分析的灵敏度分别为96.67%和100%,特异性分别为82.14%和96.88%,正确率分别为89.66%和98.44%。对于使用MALDI(+)-TOF MS进行的蛋白质组学分析,线性PLS-DA模型的准确率为99.10%。结论:ESI-Orbitrap质谱技术和MALDI-TOF质谱技术结合化学计量学,在鉴别免疫应答方面具有较高的敏感性和特异性。然而,通过直接输注ESI质谱对脂质谱的研究代表了一种有价值和有效的方法,加强了质谱在临床诊断中的应用,特别是在高通量和微创分析的目标时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic screening of COVID-19 based on multiomics data by high-resolution mass spectrometry (MALDI (+)-TOF MS and ESI(±)-Orbitrap MS).

Introduction: The urgency for rapid diagnostics during the COVID-19 pandemic in 2020 highlighted the importance of effective methods such as RT-PCR, however multiomics analyses offer a more comprehensive approach, going beyond simple viral detection to the biological understanding of the disease.

Objective: this study aimed to devise an effective multiomic method for differentiating SARS-CoV-2-infected patients, leveraging serum lipid and proteomic profiles.

Method: Electrospray ionization mass spectrometry (ESI-MS) with an Orbitrap analyzer was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for test ELISA for COVID-19). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for test ELISA for SARS-CoV-2). After processing MS data and selecting variables, statistical analyses such as the Volcano plot, Heatmap, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM) were performed to distinguish the most relevant variables to classify samples that presented or did not present antibodies for SARS-CoV-2.

Results: Lipidomics analysis using ESI(±)-Orbitrap MS and SVM models, showed sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% for positive and negative ion mode analyses, respectively. For Proteomics analyses using MALDI(+)-TOF MS, the linear PLS-DA model demonstrated an accuracy of 99.10%.

Conclusion: both ESI-Orbitrap MS and MALDI-TOF MS techniques, combined with chemometrics, demonstrated promising alternatives with high sensitivity and specificity for distinguishing the immune response. However, the investigation of the lipid profile by direct infusion ESI MS represents a valuable and efficient approach that reinforces the application of mass spectrometry in clinical diagnostics, particularly when aiming for high-throughput and minimally invasive analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信