{"title":"假外显子激活的深层内含子变异和表型变异在一个中国肌营养不良症家庭。","authors":"Xingyu Xia, Kexin Jiao, Chaoping Hu, Nachuan Cheng, Mingshi Gao, Shiyi Xiong, Ningning Wang, Bochen Zhu, Meining Diao, Dongyue Yue, Jianying Xi, Chongbo Zhao, Chengwen Chen, Wenhua Zhu","doi":"10.1038/s10038-025-01361-x","DOIUrl":null,"url":null,"abstract":"Aberrant inclusion of pseudoexons (PE) in mature mRNA is a rare splicing defect contributing to Duchenne muscular dystrophy (DMD) pathogenesis. In this study, we described two affected males from a Chinese family who presented with progressive muscle weakness, elevated creatine kinase (CK) levels, and dystrophic changes on muscle pathology. Whole-genome sequencing followed by linkage-based filtering identified a shared deep intronic variant in intron 47 of DMD gene (c.6913-4037T>G), which activated a cryptic splice site and resulted in the inclusion of a 72 bp PE between exons 47 and 48. Patient induced pluripotent stem cells (iPSCs)-derived myotubes from the patient confirmed the presence of this PE, with a significant reduction in dystrophin expression compared to controls. Quantitative PCR revealed that aberrant transcripts comprised ~89% of total DMD transcripts in myotubes and ~97% in muscle, correlating with near-complete loss of dystrophin. Functional assays further showed impaired myotube fusion and altered calcium signaling. This study underscores the diagnostic complexity of intronic DMD variants and provides evidence supporting the pathogenicity of c.6913-4037T>G.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"70 9","pages":"483-488"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudoexon activating by a deep intronic variant and phenotype variation in a Chinese family with dystrophinopathy\",\"authors\":\"Xingyu Xia, Kexin Jiao, Chaoping Hu, Nachuan Cheng, Mingshi Gao, Shiyi Xiong, Ningning Wang, Bochen Zhu, Meining Diao, Dongyue Yue, Jianying Xi, Chongbo Zhao, Chengwen Chen, Wenhua Zhu\",\"doi\":\"10.1038/s10038-025-01361-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aberrant inclusion of pseudoexons (PE) in mature mRNA is a rare splicing defect contributing to Duchenne muscular dystrophy (DMD) pathogenesis. In this study, we described two affected males from a Chinese family who presented with progressive muscle weakness, elevated creatine kinase (CK) levels, and dystrophic changes on muscle pathology. Whole-genome sequencing followed by linkage-based filtering identified a shared deep intronic variant in intron 47 of DMD gene (c.6913-4037T>G), which activated a cryptic splice site and resulted in the inclusion of a 72 bp PE between exons 47 and 48. Patient induced pluripotent stem cells (iPSCs)-derived myotubes from the patient confirmed the presence of this PE, with a significant reduction in dystrophin expression compared to controls. Quantitative PCR revealed that aberrant transcripts comprised ~89% of total DMD transcripts in myotubes and ~97% in muscle, correlating with near-complete loss of dystrophin. Functional assays further showed impaired myotube fusion and altered calcium signaling. This study underscores the diagnostic complexity of intronic DMD variants and provides evidence supporting the pathogenicity of c.6913-4037T>G.\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\"70 9\",\"pages\":\"483-488\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s10038-025-01361-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-025-01361-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Pseudoexon activating by a deep intronic variant and phenotype variation in a Chinese family with dystrophinopathy
Aberrant inclusion of pseudoexons (PE) in mature mRNA is a rare splicing defect contributing to Duchenne muscular dystrophy (DMD) pathogenesis. In this study, we described two affected males from a Chinese family who presented with progressive muscle weakness, elevated creatine kinase (CK) levels, and dystrophic changes on muscle pathology. Whole-genome sequencing followed by linkage-based filtering identified a shared deep intronic variant in intron 47 of DMD gene (c.6913-4037T>G), which activated a cryptic splice site and resulted in the inclusion of a 72 bp PE between exons 47 and 48. Patient induced pluripotent stem cells (iPSCs)-derived myotubes from the patient confirmed the presence of this PE, with a significant reduction in dystrophin expression compared to controls. Quantitative PCR revealed that aberrant transcripts comprised ~89% of total DMD transcripts in myotubes and ~97% in muscle, correlating with near-complete loss of dystrophin. Functional assays further showed impaired myotube fusion and altered calcium signaling. This study underscores the diagnostic complexity of intronic DMD variants and provides evidence supporting the pathogenicity of c.6913-4037T>G.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.