天然和合成聚合物在烧伤创面愈合中的应用。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Sepehr Zamani, Arian Ehterami, Ahmad Vaez, Mahdi Naeiji, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Maryam Molaee Eshgh Abad, Zohreh Arabpour, Nafiseh Baheiraei, Arash Farahani, Ali R Djalilian, Majid Salehi
{"title":"天然和合成聚合物在烧伤创面愈合中的应用。","authors":"Sepehr Zamani, Arian Ehterami, Ahmad Vaez, Mahdi Naeiji, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Maryam Molaee Eshgh Abad, Zohreh Arabpour, Nafiseh Baheiraei, Arash Farahani, Ali R Djalilian, Majid Salehi","doi":"10.1080/09205063.2025.2523505","DOIUrl":null,"url":null,"abstract":"<p><p>Burn wound management presents significant therapeutic challenges due to the pathophysiological complexity of injured tissues, which disrupts healing and heightens risks of infection, dehydration, and scarring. This review systematically analyzes the efficacy of hydrogel- and non-hydrogel-based dressings in acute and sub-acute burn care. Hydrogels with a water content of more than 90% present an environment for healing by way of autolytic debridement, angiogenesis, fibroblast proliferation, and pain relief-they are extremely helpful in partial-thickness burns owing to their cooling and non-adherence characteristics. Additionally, hydrogels can deliver bioactive agents (e.g. antimicrobials) and manage moderate exudate, enhancing their utility in infected wounds. In contrast, non-hydrogel dressings-including foam, nanofiber, and film-based systems-are tailored for heavily exudative or deep burns (e.g. full-thickness injuries). Foam dressings combine high absorbency with mechanical protection, while electrospun nanofibers mimic the extracellular matrix to accelerate cell migration. Key determinants for polymer selection include hydrophilicity, adhesion properties, wound depth, exudate volume, and microbial load. Natural polymers like chitosan and alginate enhance biocompatibility and antimicrobial activity, whereas synthetic variants (e.g. polyurethane) provide mechanical stability. Composite systems integrate these advantages but face scalability limitations. Emerging innovations, such as pH-responsive and sensor-integrated smart dressings, alongside biomimetic designs, promise advancements in personalized burn care. This review examines the types of polymeric wound dressings and their strengths and weaknesses, addresses current limitations, and leverages technological advances to develop appropriate dressing solutions that can transform burn management paradigms.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-66"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural and synthetic polymers in burn wound healing.\",\"authors\":\"Sepehr Zamani, Arian Ehterami, Ahmad Vaez, Mahdi Naeiji, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Maryam Molaee Eshgh Abad, Zohreh Arabpour, Nafiseh Baheiraei, Arash Farahani, Ali R Djalilian, Majid Salehi\",\"doi\":\"10.1080/09205063.2025.2523505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Burn wound management presents significant therapeutic challenges due to the pathophysiological complexity of injured tissues, which disrupts healing and heightens risks of infection, dehydration, and scarring. This review systematically analyzes the efficacy of hydrogel- and non-hydrogel-based dressings in acute and sub-acute burn care. Hydrogels with a water content of more than 90% present an environment for healing by way of autolytic debridement, angiogenesis, fibroblast proliferation, and pain relief-they are extremely helpful in partial-thickness burns owing to their cooling and non-adherence characteristics. Additionally, hydrogels can deliver bioactive agents (e.g. antimicrobials) and manage moderate exudate, enhancing their utility in infected wounds. In contrast, non-hydrogel dressings-including foam, nanofiber, and film-based systems-are tailored for heavily exudative or deep burns (e.g. full-thickness injuries). Foam dressings combine high absorbency with mechanical protection, while electrospun nanofibers mimic the extracellular matrix to accelerate cell migration. Key determinants for polymer selection include hydrophilicity, adhesion properties, wound depth, exudate volume, and microbial load. Natural polymers like chitosan and alginate enhance biocompatibility and antimicrobial activity, whereas synthetic variants (e.g. polyurethane) provide mechanical stability. Composite systems integrate these advantages but face scalability limitations. Emerging innovations, such as pH-responsive and sensor-integrated smart dressings, alongside biomimetic designs, promise advancements in personalized burn care. This review examines the types of polymeric wound dressings and their strengths and weaknesses, addresses current limitations, and leverages technological advances to develop appropriate dressing solutions that can transform burn management paradigms.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-66\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2523505\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2523505","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于受伤组织的病理生理复杂性,烧伤创面管理提出了重大的治疗挑战,这会破坏愈合并增加感染、脱水和瘢痕形成的风险。本文系统分析了水凝胶和非水凝胶敷料在急性和亚急性烧伤护理中的疗效。含水量超过90%的水凝胶具有自溶性清创、血管生成、成纤维细胞增殖和疼痛缓解等愈合环境,由于其冷却和不粘附特性,它们对部分厚度烧伤非常有帮助。此外,水凝胶可以输送生物活性剂(如抗菌剂)并控制适度渗出,增强了它们在感染伤口中的效用。相比之下,非水凝胶敷料——包括泡沫、纳米纤维和基于薄膜的系统——是为严重渗出或深度烧伤(例如全层损伤)量身定制的。泡沫敷料结合了高吸收性和机械保护,而静电纺纳米纤维模拟细胞外基质,加速细胞迁移。聚合物选择的关键决定因素包括亲水性、粘附性、伤口深度、渗出量和微生物负荷。壳聚糖和海藻酸盐等天然聚合物增强了生物相容性和抗菌活性,而合成聚合物(如聚氨酯)则提供了机械稳定性。复合系统集成了这些优点,但面临可伸缩性的限制。新兴的创新,如ph值响应和传感器集成智能敷料,以及仿生设计,有望在个性化烧伤护理方面取得进展。本文综述了聚合物伤口敷料的类型及其优缺点,解决了当前的局限性,并利用技术进步来开发合适的敷料解决方案,从而改变烧伤管理范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural and synthetic polymers in burn wound healing.

Burn wound management presents significant therapeutic challenges due to the pathophysiological complexity of injured tissues, which disrupts healing and heightens risks of infection, dehydration, and scarring. This review systematically analyzes the efficacy of hydrogel- and non-hydrogel-based dressings in acute and sub-acute burn care. Hydrogels with a water content of more than 90% present an environment for healing by way of autolytic debridement, angiogenesis, fibroblast proliferation, and pain relief-they are extremely helpful in partial-thickness burns owing to their cooling and non-adherence characteristics. Additionally, hydrogels can deliver bioactive agents (e.g. antimicrobials) and manage moderate exudate, enhancing their utility in infected wounds. In contrast, non-hydrogel dressings-including foam, nanofiber, and film-based systems-are tailored for heavily exudative or deep burns (e.g. full-thickness injuries). Foam dressings combine high absorbency with mechanical protection, while electrospun nanofibers mimic the extracellular matrix to accelerate cell migration. Key determinants for polymer selection include hydrophilicity, adhesion properties, wound depth, exudate volume, and microbial load. Natural polymers like chitosan and alginate enhance biocompatibility and antimicrobial activity, whereas synthetic variants (e.g. polyurethane) provide mechanical stability. Composite systems integrate these advantages but face scalability limitations. Emerging innovations, such as pH-responsive and sensor-integrated smart dressings, alongside biomimetic designs, promise advancements in personalized burn care. This review examines the types of polymeric wound dressings and their strengths and weaknesses, addresses current limitations, and leverages technological advances to develop appropriate dressing solutions that can transform burn management paradigms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信