中国人群急性A型主动脉夹层手术后急性肾损伤的人工智能预测

IF 2.3 4区 医学 Q2 ANESTHESIOLOGY
Zheyuan Chen, Xuran Lu, Maomao Liu, Yan Yu, Li Yu, Sihao Cheng, Zhihui Zhu, Yongqiang Lai, Nan Liu
{"title":"中国人群急性A型主动脉夹层手术后急性肾损伤的人工智能预测","authors":"Zheyuan Chen, Xuran Lu, Maomao Liu, Yan Yu, Li Yu, Sihao Cheng, Zhihui Zhu, Yongqiang Lai, Nan Liu","doi":"10.1053/j.jvca.2025.05.047","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate machine learning (ML) models for predicting acute kidney injury (AKI) following acute type A aortic dissection (ATAAD) surgery.</p><p><strong>Design: </strong>A retrospective single-center study.</p><p><strong>Setting: </strong>Beijing Anzhen Hospital (November 2018 to October 2023).</p><p><strong>Participants: </strong>1350 patients with ATAAD.</p><p><strong>Interventions: </strong>Predictive models have been developed using various ML algorithms to estimate the risk of postoperative AKI.</p><p><strong>Measurements and main results: </strong>Patients were randomly divided into training (85%) and testing (15%) sets. Seven ML algorithms-Gradient Boosting Machine (GBM), LightGBM, Random Forest (RF), K-Nearest Neighbors (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Naive Bayes (NB), and Logistic Regression (LR)-were evaluated. Model performance was assessed using SHapley Additive exPlanations (SHAP) analysis. A web-based application was developed using the optimal model. Postoperative AKI occurred in 586 patients (43.4%). The constructed models-GBM, LightGBM, RF, KNN, MLP-NN, NB, and LR-achieved areas under the receiver operating characteristic curves of 0.849 (95% CI 0.798-0.902), 0.874 (95% CI 0.831-0.918), 0.800 (95% CI 0.737-0.855), 0.672 (95% CI 0.598-0.739), 0.529 (95% CI 0.486-0.574), 0.833 (95% CI 0.775-0.886), and 0.866 (95% CI 0.810-0.912), respectively, in the testing set. Among these, the LightGBM model surpassed others in predictive accuracy, calibration, and clinical utility.</p><p><strong>Conclusion: </strong>ML models, particularly LightGBM, accurately predict postoperative AKI risk in ATAAD patients, offering a promising tool to enhance perioperative management and patient outcomes.</p>","PeriodicalId":15176,"journal":{"name":"Journal of cardiothoracic and vascular anesthesia","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Driven Prediction of Acute Kidney Injury Following Acute Type A Aortic Dissection Surgery in a Chinese Population.\",\"authors\":\"Zheyuan Chen, Xuran Lu, Maomao Liu, Yan Yu, Li Yu, Sihao Cheng, Zhihui Zhu, Yongqiang Lai, Nan Liu\",\"doi\":\"10.1053/j.jvca.2025.05.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop and validate machine learning (ML) models for predicting acute kidney injury (AKI) following acute type A aortic dissection (ATAAD) surgery.</p><p><strong>Design: </strong>A retrospective single-center study.</p><p><strong>Setting: </strong>Beijing Anzhen Hospital (November 2018 to October 2023).</p><p><strong>Participants: </strong>1350 patients with ATAAD.</p><p><strong>Interventions: </strong>Predictive models have been developed using various ML algorithms to estimate the risk of postoperative AKI.</p><p><strong>Measurements and main results: </strong>Patients were randomly divided into training (85%) and testing (15%) sets. Seven ML algorithms-Gradient Boosting Machine (GBM), LightGBM, Random Forest (RF), K-Nearest Neighbors (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Naive Bayes (NB), and Logistic Regression (LR)-were evaluated. Model performance was assessed using SHapley Additive exPlanations (SHAP) analysis. A web-based application was developed using the optimal model. Postoperative AKI occurred in 586 patients (43.4%). The constructed models-GBM, LightGBM, RF, KNN, MLP-NN, NB, and LR-achieved areas under the receiver operating characteristic curves of 0.849 (95% CI 0.798-0.902), 0.874 (95% CI 0.831-0.918), 0.800 (95% CI 0.737-0.855), 0.672 (95% CI 0.598-0.739), 0.529 (95% CI 0.486-0.574), 0.833 (95% CI 0.775-0.886), and 0.866 (95% CI 0.810-0.912), respectively, in the testing set. Among these, the LightGBM model surpassed others in predictive accuracy, calibration, and clinical utility.</p><p><strong>Conclusion: </strong>ML models, particularly LightGBM, accurately predict postoperative AKI risk in ATAAD patients, offering a promising tool to enhance perioperative management and patient outcomes.</p>\",\"PeriodicalId\":15176,\"journal\":{\"name\":\"Journal of cardiothoracic and vascular anesthesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cardiothoracic and vascular anesthesia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1053/j.jvca.2025.05.047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cardiothoracic and vascular anesthesia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.jvca.2025.05.047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发并验证用于预测急性A型主动脉夹层(ATAAD)手术后急性肾损伤(AKI)的机器学习(ML)模型。设计:回顾性单中心研究。工作地点:北京安贞医院(2018年11月- 2023年10月)。参与者:1350例ATAAD患者。干预措施:使用各种ML算法开发了预测模型来估计术后AKI的风险。测量和主要结果:患者随机分为训练组(85%)和测试组(15%)。7种机器学习算法——梯度增强机(GBM)、LightGBM、随机森林(RF)、k近邻(KNN)、多层感知器神经网络(MLP-NN)、朴素贝叶斯(NB)和逻辑回归(LR)——进行了评估。采用SHapley加性解释(SHAP)分析评估模型性能。利用最优模型开发了一个基于web的应用程序。术后发生AKI 586例(43.4%)。所构建的模型- gbm、LightGBM、RF、KNN、MLP-NN、NB和lr -在测试集中的受试者工作特征曲线下的面积分别为0.849 (95% CI 0.798-0.902)、0.874 (95% CI 0.831-0.918)、0.800 (95% CI 0.737-0.855)、0.672 (95% CI 0.598-0.739)、0.529 (95% CI 0.486-0.574)、0.833 (95% CI 0.775-0.886)和0.866 (95% CI 0.810-0.912)。其中,LightGBM模型在预测准确性、校准和临床实用性方面优于其他模型。结论:ML模型,尤其是LightGBM,可以准确预测ATAAD患者术后AKI风险,为加强围手术期管理和患者预后提供了一种有希望的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence-Driven Prediction of Acute Kidney Injury Following Acute Type A Aortic Dissection Surgery in a Chinese Population.

Objectives: To develop and validate machine learning (ML) models for predicting acute kidney injury (AKI) following acute type A aortic dissection (ATAAD) surgery.

Design: A retrospective single-center study.

Setting: Beijing Anzhen Hospital (November 2018 to October 2023).

Participants: 1350 patients with ATAAD.

Interventions: Predictive models have been developed using various ML algorithms to estimate the risk of postoperative AKI.

Measurements and main results: Patients were randomly divided into training (85%) and testing (15%) sets. Seven ML algorithms-Gradient Boosting Machine (GBM), LightGBM, Random Forest (RF), K-Nearest Neighbors (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Naive Bayes (NB), and Logistic Regression (LR)-were evaluated. Model performance was assessed using SHapley Additive exPlanations (SHAP) analysis. A web-based application was developed using the optimal model. Postoperative AKI occurred in 586 patients (43.4%). The constructed models-GBM, LightGBM, RF, KNN, MLP-NN, NB, and LR-achieved areas under the receiver operating characteristic curves of 0.849 (95% CI 0.798-0.902), 0.874 (95% CI 0.831-0.918), 0.800 (95% CI 0.737-0.855), 0.672 (95% CI 0.598-0.739), 0.529 (95% CI 0.486-0.574), 0.833 (95% CI 0.775-0.886), and 0.866 (95% CI 0.810-0.912), respectively, in the testing set. Among these, the LightGBM model surpassed others in predictive accuracy, calibration, and clinical utility.

Conclusion: ML models, particularly LightGBM, accurately predict postoperative AKI risk in ATAAD patients, offering a promising tool to enhance perioperative management and patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
17.90%
发文量
606
审稿时长
37 days
期刊介绍: The Journal of Cardiothoracic and Vascular Anesthesia is primarily aimed at anesthesiologists who deal with patients undergoing cardiac, thoracic or vascular surgical procedures. JCVA features a multidisciplinary approach, with contributions from cardiac, vascular and thoracic surgeons, cardiologists, and other related specialists. Emphasis is placed on rapid publication of clinically relevant material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信