João Areias Saraiva, Martin Becker, Martin Dyrba, Burcu Bölükbaş, Enrico Michele Salamone, Claudio Babiloni, Michael Kölch, Harald Hampel, Stefan Teipel, Thomas Kirste, Christoph Berger
{"title":"脑电图特征支持阿尔茨海默病的退化假说:老年期和儿童期大脑变化的探索性比较","authors":"João Areias Saraiva, Martin Becker, Martin Dyrba, Burcu Bölükbaş, Enrico Michele Salamone, Claudio Babiloni, Michael Kölch, Harald Hampel, Stefan Teipel, Thomas Kirste, Christoph Berger","doi":"10.1177/13872877251352119","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe retrogenesis hypothesis (RH) suggests that the functional and cognitive decline observed in Alzheimer's disease dementia mirrors in reverse order the brain development during childhood and adolescence.ObjectiveEquivalent electroencephalogram (EEG) patterns between older adults across different cognitive decline stages and children across different brain maturation stages were directly compared.MethodsTo capture the complex patterns that allow for such a comparison, a regression model was trained on EEG data from N = 510 older adults, at different stages of cognitive reserve, to identify EEG markers predictive of global cognitive status. The model was then applied on the same EEG markers of N = 696 children across different ages.ResultsThe model predicted MMSE scores with an average error of 2.53 and R<sup>2</sup> of 0.80. When applied to children, predictions correlated positively with age (r = 0.73). Key predictors of cognitive function concordant in both populations were theta coherence (right frontal-left temporal/parietal), temporal Hjorth complexity, and beta edge frequency, supporting the RH.ConclusionsThese EEG features were inversely associated between older adults and children, supporting a functional underpinning of the retrogenesis model of dementia. Clinical validation of these biomarkers could favor their use in the continuous monitoring of cognitive function.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251352119"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroencephalogram features support the retrogenesis hypothesis of Alzheimer's disease: Exploratory comparison of brain changes in aging and childhood.\",\"authors\":\"João Areias Saraiva, Martin Becker, Martin Dyrba, Burcu Bölükbaş, Enrico Michele Salamone, Claudio Babiloni, Michael Kölch, Harald Hampel, Stefan Teipel, Thomas Kirste, Christoph Berger\",\"doi\":\"10.1177/13872877251352119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundThe retrogenesis hypothesis (RH) suggests that the functional and cognitive decline observed in Alzheimer's disease dementia mirrors in reverse order the brain development during childhood and adolescence.ObjectiveEquivalent electroencephalogram (EEG) patterns between older adults across different cognitive decline stages and children across different brain maturation stages were directly compared.MethodsTo capture the complex patterns that allow for such a comparison, a regression model was trained on EEG data from N = 510 older adults, at different stages of cognitive reserve, to identify EEG markers predictive of global cognitive status. The model was then applied on the same EEG markers of N = 696 children across different ages.ResultsThe model predicted MMSE scores with an average error of 2.53 and R<sup>2</sup> of 0.80. When applied to children, predictions correlated positively with age (r = 0.73). Key predictors of cognitive function concordant in both populations were theta coherence (right frontal-left temporal/parietal), temporal Hjorth complexity, and beta edge frequency, supporting the RH.ConclusionsThese EEG features were inversely associated between older adults and children, supporting a functional underpinning of the retrogenesis model of dementia. Clinical validation of these biomarkers could favor their use in the continuous monitoring of cognitive function.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877251352119\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877251352119\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251352119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Electroencephalogram features support the retrogenesis hypothesis of Alzheimer's disease: Exploratory comparison of brain changes in aging and childhood.
BackgroundThe retrogenesis hypothesis (RH) suggests that the functional and cognitive decline observed in Alzheimer's disease dementia mirrors in reverse order the brain development during childhood and adolescence.ObjectiveEquivalent electroencephalogram (EEG) patterns between older adults across different cognitive decline stages and children across different brain maturation stages were directly compared.MethodsTo capture the complex patterns that allow for such a comparison, a regression model was trained on EEG data from N = 510 older adults, at different stages of cognitive reserve, to identify EEG markers predictive of global cognitive status. The model was then applied on the same EEG markers of N = 696 children across different ages.ResultsThe model predicted MMSE scores with an average error of 2.53 and R2 of 0.80. When applied to children, predictions correlated positively with age (r = 0.73). Key predictors of cognitive function concordant in both populations were theta coherence (right frontal-left temporal/parietal), temporal Hjorth complexity, and beta edge frequency, supporting the RH.ConclusionsThese EEG features were inversely associated between older adults and children, supporting a functional underpinning of the retrogenesis model of dementia. Clinical validation of these biomarkers could favor their use in the continuous monitoring of cognitive function.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.