Xinrui Wang, Wen Lu, Ruibin Cai, Jie Jiang, Chuyue Wang, Jinli Liao, Yongshu Zhang, Danni Li, Zi Ye, Ming Long, Zhihao Liu
{"title":"肠道NF-κB通路介导的焦亡参与内毒素血症诱导的肠道损伤。","authors":"Xinrui Wang, Wen Lu, Ruibin Cai, Jie Jiang, Chuyue Wang, Jinli Liao, Yongshu Zhang, Danni Li, Zi Ye, Ming Long, Zhihao Liu","doi":"10.1007/s00011-025-02064-x","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis contributes to activation of the innate immunity system and defense against infection by pathogens. Endotoxemia is the host inflammatory storm occurring in response to severe and life-threatening infections caused by endotoxin from gram-negative bacilli. However, whether pyroptosis is involved in intestinal epithelial cell (IEC) or intestinal stem cell (ISC) injury induced by endotoxemia remains unclear. Mice with NF-κB p65 deletion in IECs (p65<sup>IEC - KO</sup>) were used to investigate the role of NF-κB-mediated pyroptosis in endotoxemia-induced intestinal injury. Morphology, pyroptosis, permeability, inflammation, endoplasmic reticulum stress in the intestine and survival were evaluated in WT and p65<sup>IEC - KO</sup> mice. Pyroptosis was found in intestinal epithelial cells of mice treated with lipopolysaccharide (LPS), but was significantly reduced in p65<sup>IEC - KO</sup> mice. Mice with endotoxemia exhibited morphological alterations in intestinal tissue, with a shortened villus length and crypt depth, increased intestinal permeability, increased inflammatory factors, and reduced survival rate, all of which were markedly improved in p65<sup>IEC - KO</sup> mice. Importantly, ER stress was found to be downregulated in IECs of p65<sup>IEC - KO</sup> mice with endotoxemia. Furthermore, the ER stress activator tunicamycin markedly enhanced IEC pyroptosis and aggravated intestinal injury in p65<sup>IEC - KO</sup> mice with endotoxemia. NF-κB p65-mediated pyroptosis participates in IEC injury in response to endotoxemia via regulation of ER stress. It may provide a potential therapeutic target for protecting against endotoxemia-induced intestinal injury.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"94"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal NF-κB pathway-mediated pyroptosis contributes to endotoxemia-induced intestinal injury.\",\"authors\":\"Xinrui Wang, Wen Lu, Ruibin Cai, Jie Jiang, Chuyue Wang, Jinli Liao, Yongshu Zhang, Danni Li, Zi Ye, Ming Long, Zhihao Liu\",\"doi\":\"10.1007/s00011-025-02064-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyroptosis contributes to activation of the innate immunity system and defense against infection by pathogens. Endotoxemia is the host inflammatory storm occurring in response to severe and life-threatening infections caused by endotoxin from gram-negative bacilli. However, whether pyroptosis is involved in intestinal epithelial cell (IEC) or intestinal stem cell (ISC) injury induced by endotoxemia remains unclear. Mice with NF-κB p65 deletion in IECs (p65<sup>IEC - KO</sup>) were used to investigate the role of NF-κB-mediated pyroptosis in endotoxemia-induced intestinal injury. Morphology, pyroptosis, permeability, inflammation, endoplasmic reticulum stress in the intestine and survival were evaluated in WT and p65<sup>IEC - KO</sup> mice. Pyroptosis was found in intestinal epithelial cells of mice treated with lipopolysaccharide (LPS), but was significantly reduced in p65<sup>IEC - KO</sup> mice. Mice with endotoxemia exhibited morphological alterations in intestinal tissue, with a shortened villus length and crypt depth, increased intestinal permeability, increased inflammatory factors, and reduced survival rate, all of which were markedly improved in p65<sup>IEC - KO</sup> mice. Importantly, ER stress was found to be downregulated in IECs of p65<sup>IEC - KO</sup> mice with endotoxemia. Furthermore, the ER stress activator tunicamycin markedly enhanced IEC pyroptosis and aggravated intestinal injury in p65<sup>IEC - KO</sup> mice with endotoxemia. NF-κB p65-mediated pyroptosis participates in IEC injury in response to endotoxemia via regulation of ER stress. It may provide a potential therapeutic target for protecting against endotoxemia-induced intestinal injury.</p>\",\"PeriodicalId\":13550,\"journal\":{\"name\":\"Inflammation Research\",\"volume\":\"74 1\",\"pages\":\"94\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00011-025-02064-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02064-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Intestinal NF-κB pathway-mediated pyroptosis contributes to endotoxemia-induced intestinal injury.
Pyroptosis contributes to activation of the innate immunity system and defense against infection by pathogens. Endotoxemia is the host inflammatory storm occurring in response to severe and life-threatening infections caused by endotoxin from gram-negative bacilli. However, whether pyroptosis is involved in intestinal epithelial cell (IEC) or intestinal stem cell (ISC) injury induced by endotoxemia remains unclear. Mice with NF-κB p65 deletion in IECs (p65IEC - KO) were used to investigate the role of NF-κB-mediated pyroptosis in endotoxemia-induced intestinal injury. Morphology, pyroptosis, permeability, inflammation, endoplasmic reticulum stress in the intestine and survival were evaluated in WT and p65IEC - KO mice. Pyroptosis was found in intestinal epithelial cells of mice treated with lipopolysaccharide (LPS), but was significantly reduced in p65IEC - KO mice. Mice with endotoxemia exhibited morphological alterations in intestinal tissue, with a shortened villus length and crypt depth, increased intestinal permeability, increased inflammatory factors, and reduced survival rate, all of which were markedly improved in p65IEC - KO mice. Importantly, ER stress was found to be downregulated in IECs of p65IEC - KO mice with endotoxemia. Furthermore, the ER stress activator tunicamycin markedly enhanced IEC pyroptosis and aggravated intestinal injury in p65IEC - KO mice with endotoxemia. NF-κB p65-mediated pyroptosis participates in IEC injury in response to endotoxemia via regulation of ER stress. It may provide a potential therapeutic target for protecting against endotoxemia-induced intestinal injury.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.