Xinyu Zhang, Liwen Guan, Yuya Zhang, Fan Zhong, Yuhang Xie, Yi Zhang, Xinyi Zhang, Min Zhou, Can Li, Bin Tang
{"title":"TcCYP4C1与海藻糖联合作用对褐藻高co2胁迫的影响。","authors":"Xinyu Zhang, Liwen Guan, Yuya Zhang, Fan Zhong, Yuhang Xie, Yi Zhang, Xinyi Zhang, Min Zhou, Can Li, Bin Tang","doi":"10.1111/imb.12997","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome P450 monooxygenase (CYP), an important detoxifying enzyme in insects, is involved in the metabolism and degradation of both exogenous compounds and endogenous substances. To investigate the involvement of the T. castaneum TcCYP4C1 gene in detoxification metabolism under high CO<sub>2</sub> and the protective role of trehalose against hypoxic stress in insects. In the present study, after successfully silencing the TcCYP4C1 gene of T. castaneum by double-stranded RNA(dsRNA), the larvae were exposed to 95% CO<sub>2</sub>. This exposure resulted in a statistically significant increase in larval mortality and a significant elevation in the activity of the carboxylesterase enzyme (CarE). However, a decrease in mortality from 18.15% to 11.24% was observed when larvae were fed trehalose after dsRNA injection. In addition, the gene expression levels of the trehalose metabolism pathway related genes TRE1-3, TRE1-4 and TPS2 were significantly up-regulated after 95% CO<sub>2</sub> treatment. In summary, the TcCYP4C1 gene emerges as a pivotal factor in the adaptive response of T. castaneum to high CO<sub>2</sub>. Trehalose effectively mitigates the detrimental effects resulting from the silencing of TcCYP4C1 and exposure to high CO<sub>2</sub> stress in T. castaneum. Our findings not only establish a theoretical foundation for the development of novel pesticides tailored for low-oxygen grain storage environments but also inspire innovative, environmentally sustainable pest management strategies in the grain storage sector.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TcCYP4C1 in combination with trehalose to cope with high-CO<sub>2</sub> stress in Tribolium castaneum (Coleoptera).\",\"authors\":\"Xinyu Zhang, Liwen Guan, Yuya Zhang, Fan Zhong, Yuhang Xie, Yi Zhang, Xinyi Zhang, Min Zhou, Can Li, Bin Tang\",\"doi\":\"10.1111/imb.12997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytochrome P450 monooxygenase (CYP), an important detoxifying enzyme in insects, is involved in the metabolism and degradation of both exogenous compounds and endogenous substances. To investigate the involvement of the T. castaneum TcCYP4C1 gene in detoxification metabolism under high CO<sub>2</sub> and the protective role of trehalose against hypoxic stress in insects. In the present study, after successfully silencing the TcCYP4C1 gene of T. castaneum by double-stranded RNA(dsRNA), the larvae were exposed to 95% CO<sub>2</sub>. This exposure resulted in a statistically significant increase in larval mortality and a significant elevation in the activity of the carboxylesterase enzyme (CarE). However, a decrease in mortality from 18.15% to 11.24% was observed when larvae were fed trehalose after dsRNA injection. In addition, the gene expression levels of the trehalose metabolism pathway related genes TRE1-3, TRE1-4 and TPS2 were significantly up-regulated after 95% CO<sub>2</sub> treatment. In summary, the TcCYP4C1 gene emerges as a pivotal factor in the adaptive response of T. castaneum to high CO<sub>2</sub>. Trehalose effectively mitigates the detrimental effects resulting from the silencing of TcCYP4C1 and exposure to high CO<sub>2</sub> stress in T. castaneum. Our findings not only establish a theoretical foundation for the development of novel pesticides tailored for low-oxygen grain storage environments but also inspire innovative, environmentally sustainable pest management strategies in the grain storage sector.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12997\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12997","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TcCYP4C1 in combination with trehalose to cope with high-CO2 stress in Tribolium castaneum (Coleoptera).
Cytochrome P450 monooxygenase (CYP), an important detoxifying enzyme in insects, is involved in the metabolism and degradation of both exogenous compounds and endogenous substances. To investigate the involvement of the T. castaneum TcCYP4C1 gene in detoxification metabolism under high CO2 and the protective role of trehalose against hypoxic stress in insects. In the present study, after successfully silencing the TcCYP4C1 gene of T. castaneum by double-stranded RNA(dsRNA), the larvae were exposed to 95% CO2. This exposure resulted in a statistically significant increase in larval mortality and a significant elevation in the activity of the carboxylesterase enzyme (CarE). However, a decrease in mortality from 18.15% to 11.24% was observed when larvae were fed trehalose after dsRNA injection. In addition, the gene expression levels of the trehalose metabolism pathway related genes TRE1-3, TRE1-4 and TPS2 were significantly up-regulated after 95% CO2 treatment. In summary, the TcCYP4C1 gene emerges as a pivotal factor in the adaptive response of T. castaneum to high CO2. Trehalose effectively mitigates the detrimental effects resulting from the silencing of TcCYP4C1 and exposure to high CO2 stress in T. castaneum. Our findings not only establish a theoretical foundation for the development of novel pesticides tailored for low-oxygen grain storage environments but also inspire innovative, environmentally sustainable pest management strategies in the grain storage sector.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).