Molly Magarotto, Richard T Gawne, Gabriele Vilkaite, Marcello Beltrami, Andrew S Mason, Han-Jou Chen
{"title":"家族性ALS/ ftd相关rna结合缺陷TDP-43突变体在体外引起神经元和突触转录失调。","authors":"Molly Magarotto, Richard T Gawne, Gabriele Vilkaite, Marcello Beltrami, Andrew S Mason, Han-Jou Chen","doi":"10.1093/hmg/ddaf111","DOIUrl":null,"url":null,"abstract":"<p><p>TDP-43 is an RNA-binding protein constituting the pathological inclusions observed in ~ 95% of ALS and ~ 50% of FTD patients. In ALS and FTD, TDP-43 mislocalises to the cytoplasm and forms insoluble, hyperphosphorylated and ubiquitinated aggregates that enhance cytotoxicity and contribute to neurodegeneration. Despite its primary role as an RNA/DNA-binding protein, how RNA-binding deficiencies contribute to disease onset and progression are little understood. Among many identified familial mutations in TDP-43 causing ALS/FTD, only two mutations cause an RNA-binding deficiency, K181E and K263E. In this study, we used CRISPR/Cas9 to knock-in the two disease-linked RNA-binding deficient mutations in SH-SY5Y cells, generating both homozygous and heterozygous versions of the mutant TDP-43 to investigate TDP-43-mediated neuronal disruption. Significant changes were identified in the transcriptomic profiles of these cells, in particular, between K181E homozygous and heterozygous cells, with the most affected genes involved in neuronal differentiation and synaptic pathways. This result was validated in cell studies where the neuronal differentiation efficiency and neurite morphology were compromised in TDP-43 cells compared to unmodified control. Interestingly, divergent neuronal regulation was observed in K181E-TDP-43 homozygous and heterozygous cells, suggesting a more complex signalling network associated with TDP-43 genotypes and expression level which warrants further study. Overall, our data using cell models expressing the ALS/FTD disease-causing RNA-binding deficient TDP-43 mutations at endogenous levels show a robust impact on transcriptomic profiles at the whole gene and transcript isoform level that compromise neuronal differentiation and processing, providing further insights on TDP-43-mediated neurodegeneration.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1480-1494"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Familial ALS/FTD-associated RNA-binding deficient TDP-43 mutants cause neuronal and synaptic transcript dysregulation in vitro.\",\"authors\":\"Molly Magarotto, Richard T Gawne, Gabriele Vilkaite, Marcello Beltrami, Andrew S Mason, Han-Jou Chen\",\"doi\":\"10.1093/hmg/ddaf111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TDP-43 is an RNA-binding protein constituting the pathological inclusions observed in ~ 95% of ALS and ~ 50% of FTD patients. In ALS and FTD, TDP-43 mislocalises to the cytoplasm and forms insoluble, hyperphosphorylated and ubiquitinated aggregates that enhance cytotoxicity and contribute to neurodegeneration. Despite its primary role as an RNA/DNA-binding protein, how RNA-binding deficiencies contribute to disease onset and progression are little understood. Among many identified familial mutations in TDP-43 causing ALS/FTD, only two mutations cause an RNA-binding deficiency, K181E and K263E. In this study, we used CRISPR/Cas9 to knock-in the two disease-linked RNA-binding deficient mutations in SH-SY5Y cells, generating both homozygous and heterozygous versions of the mutant TDP-43 to investigate TDP-43-mediated neuronal disruption. Significant changes were identified in the transcriptomic profiles of these cells, in particular, between K181E homozygous and heterozygous cells, with the most affected genes involved in neuronal differentiation and synaptic pathways. This result was validated in cell studies where the neuronal differentiation efficiency and neurite morphology were compromised in TDP-43 cells compared to unmodified control. Interestingly, divergent neuronal regulation was observed in K181E-TDP-43 homozygous and heterozygous cells, suggesting a more complex signalling network associated with TDP-43 genotypes and expression level which warrants further study. Overall, our data using cell models expressing the ALS/FTD disease-causing RNA-binding deficient TDP-43 mutations at endogenous levels show a robust impact on transcriptomic profiles at the whole gene and transcript isoform level that compromise neuronal differentiation and processing, providing further insights on TDP-43-mediated neurodegeneration.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"1480-1494\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf111\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Familial ALS/FTD-associated RNA-binding deficient TDP-43 mutants cause neuronal and synaptic transcript dysregulation in vitro.
TDP-43 is an RNA-binding protein constituting the pathological inclusions observed in ~ 95% of ALS and ~ 50% of FTD patients. In ALS and FTD, TDP-43 mislocalises to the cytoplasm and forms insoluble, hyperphosphorylated and ubiquitinated aggregates that enhance cytotoxicity and contribute to neurodegeneration. Despite its primary role as an RNA/DNA-binding protein, how RNA-binding deficiencies contribute to disease onset and progression are little understood. Among many identified familial mutations in TDP-43 causing ALS/FTD, only two mutations cause an RNA-binding deficiency, K181E and K263E. In this study, we used CRISPR/Cas9 to knock-in the two disease-linked RNA-binding deficient mutations in SH-SY5Y cells, generating both homozygous and heterozygous versions of the mutant TDP-43 to investigate TDP-43-mediated neuronal disruption. Significant changes were identified in the transcriptomic profiles of these cells, in particular, between K181E homozygous and heterozygous cells, with the most affected genes involved in neuronal differentiation and synaptic pathways. This result was validated in cell studies where the neuronal differentiation efficiency and neurite morphology were compromised in TDP-43 cells compared to unmodified control. Interestingly, divergent neuronal regulation was observed in K181E-TDP-43 homozygous and heterozygous cells, suggesting a more complex signalling network associated with TDP-43 genotypes and expression level which warrants further study. Overall, our data using cell models expressing the ALS/FTD disease-causing RNA-binding deficient TDP-43 mutations at endogenous levels show a robust impact on transcriptomic profiles at the whole gene and transcript isoform level that compromise neuronal differentiation and processing, providing further insights on TDP-43-mediated neurodegeneration.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.