{"title":"递归神经网络中钙依赖动力学的还原论建模。","authors":"Mustafa Zeki, Tamer Dag","doi":"10.3389/fncom.2025.1565552","DOIUrl":null,"url":null,"abstract":"<p><p>Mathematical analysis of biological neural networks, specifically inhibitory networks with all-to-all connections, is challenging due to their complexity and non-linearity. In examining the dynamics of individual neurons, many fast currents are involved solely in spike generation, while slower currents play a significant role in shaping a neuron's behavior. We propose a discrete map approach to analyze the behavior of inhibitory neurons that exhibit bursting modulated by slow calcium currents, leveraging the time-scale differences among neural currents. This discrete map tracks the number of spikes per burst for individual neurons. We compared the map's predictions for the number of spikes per burst and the long-term system behavior to data obtained from the continuous system. Our findings demonstrate that the discrete map can accurately predict the canonical behavioral signatures of bursting performance observed in the continuous system. Specifically, we show that the proposed map a) accounts for the dependence of the number of spikes per burst on initial calcium levels, b) explains the roles of individual currents in shaping the system's behavior, and c) can be explicitly analyzed to determine fixed points and assess their stability.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1565552"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202366/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reductionist modeling of calcium-dependent dynamics in recurrent neural networks.\",\"authors\":\"Mustafa Zeki, Tamer Dag\",\"doi\":\"10.3389/fncom.2025.1565552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mathematical analysis of biological neural networks, specifically inhibitory networks with all-to-all connections, is challenging due to their complexity and non-linearity. In examining the dynamics of individual neurons, many fast currents are involved solely in spike generation, while slower currents play a significant role in shaping a neuron's behavior. We propose a discrete map approach to analyze the behavior of inhibitory neurons that exhibit bursting modulated by slow calcium currents, leveraging the time-scale differences among neural currents. This discrete map tracks the number of spikes per burst for individual neurons. We compared the map's predictions for the number of spikes per burst and the long-term system behavior to data obtained from the continuous system. Our findings demonstrate that the discrete map can accurately predict the canonical behavioral signatures of bursting performance observed in the continuous system. Specifically, we show that the proposed map a) accounts for the dependence of the number of spikes per burst on initial calcium levels, b) explains the roles of individual currents in shaping the system's behavior, and c) can be explicitly analyzed to determine fixed points and assess their stability.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1565552\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202366/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1565552\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1565552","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Reductionist modeling of calcium-dependent dynamics in recurrent neural networks.
Mathematical analysis of biological neural networks, specifically inhibitory networks with all-to-all connections, is challenging due to their complexity and non-linearity. In examining the dynamics of individual neurons, many fast currents are involved solely in spike generation, while slower currents play a significant role in shaping a neuron's behavior. We propose a discrete map approach to analyze the behavior of inhibitory neurons that exhibit bursting modulated by slow calcium currents, leveraging the time-scale differences among neural currents. This discrete map tracks the number of spikes per burst for individual neurons. We compared the map's predictions for the number of spikes per burst and the long-term system behavior to data obtained from the continuous system. Our findings demonstrate that the discrete map can accurately predict the canonical behavioral signatures of bursting performance observed in the continuous system. Specifically, we show that the proposed map a) accounts for the dependence of the number of spikes per burst on initial calcium levels, b) explains the roles of individual currents in shaping the system's behavior, and c) can be explicitly analyzed to determine fixed points and assess their stability.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro