{"title":"余氯对再生水中耐氯菌耐药基因水平转移的影响及机制","authors":"Xueli Ren, Beiqi Xiao, Mengyi Wu, Kunlun Yang, Peng Gu, ZengShuai Zhang, Hengfeng Miao","doi":"10.1080/09593330.2025.2516055","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorine disinfection inactivates most microbes in reclaimed water, but chlorine resistant bacteria (CRB) persist, threatening water safety and spreading antibiotic resistance genes (ARGs). ARG proliferation in reclaimed water systems risks public health, as dissemination via irrigation or urban reuse may enable environmental transmission to humans, exacerbating global antibiotic resistance. One hundred and fifty-two strains of CRB were isolated from reclaimed water in this study, and the detection rate of ARGs in those CRB was 100%, the detection rate for blTEM was 100%, followed by sul3 and tetG. Macrogenomic analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes are the dominant CRB in reclaimed water. Long-term induction with the minimum inhibitory concentration (MIC) of NaClO enhanced the resistance of CRB to both Amp and NaClO. The EPS of CRB increased 1.30- to 2.04-fold, and the elevated surface hydrophobicity may serve as a co-resistance mechanism. EPS hindered disinfectant/antibiotic penetration, while hydrophobicity reduced hydrophilic molecule adhesion and promoted bacterial aggregation, both of which contribute to the enhanced resistance of CRB. Residual chlorine dose-dependently enhances ARG conjugation via ROS-SOS, ATP, and EPS pathways, unveiling novel CRB mechanisms and urging revised disinfection to mitigate ARG spread.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect and mechanism of residual-chlorine on the horizontal transfer of antibiotic resistance genes of chlorine resistant bacteria in reclaimed water.\",\"authors\":\"Xueli Ren, Beiqi Xiao, Mengyi Wu, Kunlun Yang, Peng Gu, ZengShuai Zhang, Hengfeng Miao\",\"doi\":\"10.1080/09593330.2025.2516055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chlorine disinfection inactivates most microbes in reclaimed water, but chlorine resistant bacteria (CRB) persist, threatening water safety and spreading antibiotic resistance genes (ARGs). ARG proliferation in reclaimed water systems risks public health, as dissemination via irrigation or urban reuse may enable environmental transmission to humans, exacerbating global antibiotic resistance. One hundred and fifty-two strains of CRB were isolated from reclaimed water in this study, and the detection rate of ARGs in those CRB was 100%, the detection rate for blTEM was 100%, followed by sul3 and tetG. Macrogenomic analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes are the dominant CRB in reclaimed water. Long-term induction with the minimum inhibitory concentration (MIC) of NaClO enhanced the resistance of CRB to both Amp and NaClO. The EPS of CRB increased 1.30- to 2.04-fold, and the elevated surface hydrophobicity may serve as a co-resistance mechanism. EPS hindered disinfectant/antibiotic penetration, while hydrophobicity reduced hydrophilic molecule adhesion and promoted bacterial aggregation, both of which contribute to the enhanced resistance of CRB. Residual chlorine dose-dependently enhances ARG conjugation via ROS-SOS, ATP, and EPS pathways, unveiling novel CRB mechanisms and urging revised disinfection to mitigate ARG spread.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2516055\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2516055","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect and mechanism of residual-chlorine on the horizontal transfer of antibiotic resistance genes of chlorine resistant bacteria in reclaimed water.
Chlorine disinfection inactivates most microbes in reclaimed water, but chlorine resistant bacteria (CRB) persist, threatening water safety and spreading antibiotic resistance genes (ARGs). ARG proliferation in reclaimed water systems risks public health, as dissemination via irrigation or urban reuse may enable environmental transmission to humans, exacerbating global antibiotic resistance. One hundred and fifty-two strains of CRB were isolated from reclaimed water in this study, and the detection rate of ARGs in those CRB was 100%, the detection rate for blTEM was 100%, followed by sul3 and tetG. Macrogenomic analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes are the dominant CRB in reclaimed water. Long-term induction with the minimum inhibitory concentration (MIC) of NaClO enhanced the resistance of CRB to both Amp and NaClO. The EPS of CRB increased 1.30- to 2.04-fold, and the elevated surface hydrophobicity may serve as a co-resistance mechanism. EPS hindered disinfectant/antibiotic penetration, while hydrophobicity reduced hydrophilic molecule adhesion and promoted bacterial aggregation, both of which contribute to the enhanced resistance of CRB. Residual chlorine dose-dependently enhances ARG conjugation via ROS-SOS, ATP, and EPS pathways, unveiling novel CRB mechanisms and urging revised disinfection to mitigate ARG spread.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current