{"title":"新型纳米制剂克服阿尔茨海默病中草药递送障碍。","authors":"Deepak Kumar, Pranay Wal, Ankita Wal, Mohd Qasid Lari, Astik Manju Ashesh, Dileep Kumar, Sandeep Kumar Singh, Bhupendra Kumar Singh, Ajay Kumar","doi":"10.2174/0115680266362594250527112018","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nanomedicine is a rapidly growing field in pharmaceutical science, driven by the enhanced quality of nano-formulations that improve the treatment of various diseases. Nano-sized novel drug delivery techniques for herbal pharmaceuticals have the potential to enhance activity and address concerns related to medicinal plants in the future. Natural chemicals show promise in various neurodegenerative diseases, but their permeability across the blood-brain barrier prevents them from reaching the nervous system. By improving molecular monitoring, synthesis, and diagnostics, pharmaceutical nanotechnology provides improved controlled drug delivery for the treatment of neurodegeneration.</p><p><strong>Method: </strong>The evaluated and investigated data from recent studies were gathered using Google Scholar as a search engine. We reviewed and analysed research publications from databases like Bentham Science, Elsevier, PubMed, and ScienceDirect, among others, to summarize the findings.</p><p><strong>Results: </strong>Curcumin, Centella asiatica, thymoquinone, Hypericum perforatum, Panax ginseng, quercetin, piperine, and a variety of other herbs and herbal medicines have all been examined for their potential to aid in the treatment of brain disorders like Alzheimer's disease. To enhance drug bioavailability in the brain, nanoformulations, including phytosomes, transferosomes, ethosomes, and niosomes, have been utilized as pharmaceuticals.</p><p><strong>Conclusion: </strong>Herbs and herbal medicines have been synthesized into nanoparticle form to enhance tissue distribution, achieve sustained delivery, and protect against physicochemical degradation while also increasing the solubility and bioavailability of poorly soluble herbal products. To overcome physiological complications, researchers must develop lab-scale approaches, characterization methodologies, and targeting tactics for nanoformulations with high translational potential early in product development.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Nanoformulations to Overcome Obstacles in Herbal Drug Delivery for Alzheimer's Disease.\",\"authors\":\"Deepak Kumar, Pranay Wal, Ankita Wal, Mohd Qasid Lari, Astik Manju Ashesh, Dileep Kumar, Sandeep Kumar Singh, Bhupendra Kumar Singh, Ajay Kumar\",\"doi\":\"10.2174/0115680266362594250527112018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Nanomedicine is a rapidly growing field in pharmaceutical science, driven by the enhanced quality of nano-formulations that improve the treatment of various diseases. Nano-sized novel drug delivery techniques for herbal pharmaceuticals have the potential to enhance activity and address concerns related to medicinal plants in the future. Natural chemicals show promise in various neurodegenerative diseases, but their permeability across the blood-brain barrier prevents them from reaching the nervous system. By improving molecular monitoring, synthesis, and diagnostics, pharmaceutical nanotechnology provides improved controlled drug delivery for the treatment of neurodegeneration.</p><p><strong>Method: </strong>The evaluated and investigated data from recent studies were gathered using Google Scholar as a search engine. We reviewed and analysed research publications from databases like Bentham Science, Elsevier, PubMed, and ScienceDirect, among others, to summarize the findings.</p><p><strong>Results: </strong>Curcumin, Centella asiatica, thymoquinone, Hypericum perforatum, Panax ginseng, quercetin, piperine, and a variety of other herbs and herbal medicines have all been examined for their potential to aid in the treatment of brain disorders like Alzheimer's disease. To enhance drug bioavailability in the brain, nanoformulations, including phytosomes, transferosomes, ethosomes, and niosomes, have been utilized as pharmaceuticals.</p><p><strong>Conclusion: </strong>Herbs and herbal medicines have been synthesized into nanoparticle form to enhance tissue distribution, achieve sustained delivery, and protect against physicochemical degradation while also increasing the solubility and bioavailability of poorly soluble herbal products. To overcome physiological complications, researchers must develop lab-scale approaches, characterization methodologies, and targeting tactics for nanoformulations with high translational potential early in product development.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266362594250527112018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266362594250527112018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Novel Nanoformulations to Overcome Obstacles in Herbal Drug Delivery for Alzheimer's Disease.
Introduction: Nanomedicine is a rapidly growing field in pharmaceutical science, driven by the enhanced quality of nano-formulations that improve the treatment of various diseases. Nano-sized novel drug delivery techniques for herbal pharmaceuticals have the potential to enhance activity and address concerns related to medicinal plants in the future. Natural chemicals show promise in various neurodegenerative diseases, but their permeability across the blood-brain barrier prevents them from reaching the nervous system. By improving molecular monitoring, synthesis, and diagnostics, pharmaceutical nanotechnology provides improved controlled drug delivery for the treatment of neurodegeneration.
Method: The evaluated and investigated data from recent studies were gathered using Google Scholar as a search engine. We reviewed and analysed research publications from databases like Bentham Science, Elsevier, PubMed, and ScienceDirect, among others, to summarize the findings.
Results: Curcumin, Centella asiatica, thymoquinone, Hypericum perforatum, Panax ginseng, quercetin, piperine, and a variety of other herbs and herbal medicines have all been examined for their potential to aid in the treatment of brain disorders like Alzheimer's disease. To enhance drug bioavailability in the brain, nanoformulations, including phytosomes, transferosomes, ethosomes, and niosomes, have been utilized as pharmaceuticals.
Conclusion: Herbs and herbal medicines have been synthesized into nanoparticle form to enhance tissue distribution, achieve sustained delivery, and protect against physicochemical degradation while also increasing the solubility and bioavailability of poorly soluble herbal products. To overcome physiological complications, researchers must develop lab-scale approaches, characterization methodologies, and targeting tactics for nanoformulations with high translational potential early in product development.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.