Dengpei Ji, Haiqing Yu, Xiaolin Xiao, Yongzhi Huang, Xiaoyu Zhou, Minpeng Xu, Tzyy-Ping Jung, Dong Ming
{"title":"一个用户友好的BCI编码的高频单频sdma SSaVEF使用MEG。","authors":"Dengpei Ji, Haiqing Yu, Xiaolin Xiao, Yongzhi Huang, Xiaoyu Zhou, Minpeng Xu, Tzyy-Ping Jung, Dong Ming","doi":"10.1007/s11571-025-10279-1","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetoencephalography (MEG) delivers high spatial resolution and superior detection performance for high-frequency signals compared to Electroencephalography (EEG). Therefore, researchers can leverage MEG for high-frequency steady-state asymmetric visual evoked potential (SSaVEP). Current SSaVEP encoding typically uses low-frequency stimulation with relatively large stimulus areas, hindering the applicability of this encoding method in user-friendly brain-computer interface (BCI) systems. This study introduces an ultra critical flicker frequency (ultra-CFF) single-frequency-SDMA steady-state asymmetric visual evoked field (SSaVEF) encoding powered by MEG and presents an eight-command SSaVEF-BCI system. The BCI system features a 60 Hz SSVEF visual stimulus landmark and eight visual targets spaced 45° apart. Ten participants took part in the offline experiments, during which data from 41 channels in the occipital region were collected. This study analyzed the spatiotemporal characteristics, frequency-space characteristics, signal-to-noise ratio, and other features of the SSaVEF signals. We also evaluated the system's performance using the multi-DCPM algorithm. Using the multi-DCPM algorithm, the system achieved an impressive average classification accuracy of 81.65% with 4-s length data. With a data length of 1 s, the system achieved an average Information Transfer Rate (ITR) of 32.05 bits/min, with the highest individual ITR reached an astonishing 64.45 bits/min. This study represents the exploration of a high-frequency spatial encoding SSVEF-BCI system based on MEG. The results demonstrate MEG's feasibility and potential of applying MEG in such BCI systems, providing both theoretical and practical value for the further development and implementation of future BCI systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"101"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202250/pdf/","citationCount":"0","resultStr":"{\"title\":\"A user-friendly BCI encoding by high frequency single-frequency-SDMA SSaVEF using MEG.\",\"authors\":\"Dengpei Ji, Haiqing Yu, Xiaolin Xiao, Yongzhi Huang, Xiaoyu Zhou, Minpeng Xu, Tzyy-Ping Jung, Dong Ming\",\"doi\":\"10.1007/s11571-025-10279-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetoencephalography (MEG) delivers high spatial resolution and superior detection performance for high-frequency signals compared to Electroencephalography (EEG). Therefore, researchers can leverage MEG for high-frequency steady-state asymmetric visual evoked potential (SSaVEP). Current SSaVEP encoding typically uses low-frequency stimulation with relatively large stimulus areas, hindering the applicability of this encoding method in user-friendly brain-computer interface (BCI) systems. This study introduces an ultra critical flicker frequency (ultra-CFF) single-frequency-SDMA steady-state asymmetric visual evoked field (SSaVEF) encoding powered by MEG and presents an eight-command SSaVEF-BCI system. The BCI system features a 60 Hz SSVEF visual stimulus landmark and eight visual targets spaced 45° apart. Ten participants took part in the offline experiments, during which data from 41 channels in the occipital region were collected. This study analyzed the spatiotemporal characteristics, frequency-space characteristics, signal-to-noise ratio, and other features of the SSaVEF signals. We also evaluated the system's performance using the multi-DCPM algorithm. Using the multi-DCPM algorithm, the system achieved an impressive average classification accuracy of 81.65% with 4-s length data. With a data length of 1 s, the system achieved an average Information Transfer Rate (ITR) of 32.05 bits/min, with the highest individual ITR reached an astonishing 64.45 bits/min. This study represents the exploration of a high-frequency spatial encoding SSVEF-BCI system based on MEG. The results demonstrate MEG's feasibility and potential of applying MEG in such BCI systems, providing both theoretical and practical value for the further development and implementation of future BCI systems.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"101\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202250/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10279-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10279-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A user-friendly BCI encoding by high frequency single-frequency-SDMA SSaVEF using MEG.
Magnetoencephalography (MEG) delivers high spatial resolution and superior detection performance for high-frequency signals compared to Electroencephalography (EEG). Therefore, researchers can leverage MEG for high-frequency steady-state asymmetric visual evoked potential (SSaVEP). Current SSaVEP encoding typically uses low-frequency stimulation with relatively large stimulus areas, hindering the applicability of this encoding method in user-friendly brain-computer interface (BCI) systems. This study introduces an ultra critical flicker frequency (ultra-CFF) single-frequency-SDMA steady-state asymmetric visual evoked field (SSaVEF) encoding powered by MEG and presents an eight-command SSaVEF-BCI system. The BCI system features a 60 Hz SSVEF visual stimulus landmark and eight visual targets spaced 45° apart. Ten participants took part in the offline experiments, during which data from 41 channels in the occipital region were collected. This study analyzed the spatiotemporal characteristics, frequency-space characteristics, signal-to-noise ratio, and other features of the SSaVEF signals. We also evaluated the system's performance using the multi-DCPM algorithm. Using the multi-DCPM algorithm, the system achieved an impressive average classification accuracy of 81.65% with 4-s length data. With a data length of 1 s, the system achieved an average Information Transfer Rate (ITR) of 32.05 bits/min, with the highest individual ITR reached an astonishing 64.45 bits/min. This study represents the exploration of a high-frequency spatial encoding SSVEF-BCI system based on MEG. The results demonstrate MEG's feasibility and potential of applying MEG in such BCI systems, providing both theoretical and practical value for the further development and implementation of future BCI systems.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.