Yuta Aoyagi Blue, Hideaki Iimura, Mitsuhiko P Sato, Kenta Shirasawa
{"title":"端粒到端粒基因组组装在植物泛基因组时代的影响。","authors":"Yuta Aoyagi Blue, Hideaki Iimura, Mitsuhiko P Sato, Kenta Shirasawa","doi":"10.1270/jsbbs.24065","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in sequencing technologies have enabled the determination of genome sequences of multiple lines within a single species. Comparative analysis of multiple genome sequences reveals all genes present within a species, providing insight into the genetic mechanisms that lead to the establishment of species. Highly accurate pan-genome analysis requires telomere-to-telomere gapless genome assembly, providing an ultimate genome sequence that covers all chromosomal regions without any undetermined nucleotide sequences. This review describes the genome sequencing technologies and sophisticated bioinformatics required for telomere-to-telomere gapless genome assembly, as well as a genetic mapping that can evaluate the accuracy of telomere-to-telomere genome assembly. Pan-genome analyses may contribute to the understanding of genetic mechanisms not only within a single species but also across species.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"75 1","pages":"3-12"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203254/pdf/","citationCount":"0","resultStr":"{\"title\":\"The impact of telomere-to-telomere genome assembly in the plant pan-genomics era.\",\"authors\":\"Yuta Aoyagi Blue, Hideaki Iimura, Mitsuhiko P Sato, Kenta Shirasawa\",\"doi\":\"10.1270/jsbbs.24065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in sequencing technologies have enabled the determination of genome sequences of multiple lines within a single species. Comparative analysis of multiple genome sequences reveals all genes present within a species, providing insight into the genetic mechanisms that lead to the establishment of species. Highly accurate pan-genome analysis requires telomere-to-telomere gapless genome assembly, providing an ultimate genome sequence that covers all chromosomal regions without any undetermined nucleotide sequences. This review describes the genome sequencing technologies and sophisticated bioinformatics required for telomere-to-telomere gapless genome assembly, as well as a genetic mapping that can evaluate the accuracy of telomere-to-telomere genome assembly. Pan-genome analyses may contribute to the understanding of genetic mechanisms not only within a single species but also across species.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":\"75 1\",\"pages\":\"3-12\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203254/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.24065\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.24065","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
The impact of telomere-to-telomere genome assembly in the plant pan-genomics era.
Advances in sequencing technologies have enabled the determination of genome sequences of multiple lines within a single species. Comparative analysis of multiple genome sequences reveals all genes present within a species, providing insight into the genetic mechanisms that lead to the establishment of species. Highly accurate pan-genome analysis requires telomere-to-telomere gapless genome assembly, providing an ultimate genome sequence that covers all chromosomal regions without any undetermined nucleotide sequences. This review describes the genome sequencing technologies and sophisticated bioinformatics required for telomere-to-telomere gapless genome assembly, as well as a genetic mapping that can evaluate the accuracy of telomere-to-telomere genome assembly. Pan-genome analyses may contribute to the understanding of genetic mechanisms not only within a single species but also across species.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.