{"title":"目标识别启动反向杂交介导级联扩增敏感铜绿假单胞菌分析。","authors":"Xiaoyan Wang, Jinli Hu","doi":"10.1007/s10529-025-03612-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudomonas aeruginosa (P. aeruginosa) is a significant opportunistic pathogen associated with nosocomial infections, particularly in pediatric populations, where it can lead to severe clinical manifestations, including P. aeruginosa-associated meningitis. To meet the critical need for highly sensitive detection of P. aeruginosa, a novel fluorescent biosensor utilizing a three-way junction (TWJ) probe has been developed. This biosensor capitalizes on the specific binding interaction between P. aeruginosa and a tailored aptamer embedded within a DNA TWJ structure. Upon target binding, the double-stranded DNA branches of the TWJ undergo a conformational rearrangement, resulting in the formation of two distinct DNA \"Y\" junction structures. These structures are subsequently linked by a designed sequence, initiating a DNA polymerase/endonuclease-mediated strand displacement amplification process. The TWJ-based biosensor offers several key advantages: (i) the integration of the aptamer sequence within the TWJ probe ensures high specificity for target recognition, and (ii) the subsequent enzymatic amplification significantly enhances the sensitivity of detection. Under optimized experimental conditions, the biosensor demonstrated a broad linear detection range from 10 to 10 to 10<sup>5</sup> cfu/mL, with an exceptionally low limit of detection of 4.12 cfu/mL. Recovery studies further confirmed the reliability and robustness, highlighting its potential for clinical implementation. This innovative bio-sensing strategy represents a significant advancement in diagnostic technology, offering a promising tool for the early and accurate detection of infectious diseases in pediatric patients, with potential applications in improving clinical outcomes.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 4","pages":"69"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target recognition initiated reverse hybridization mediated cascade amplification for sensitive Pseudomonas aeruginosa analysis.\",\"authors\":\"Xiaoyan Wang, Jinli Hu\",\"doi\":\"10.1007/s10529-025-03612-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pseudomonas aeruginosa (P. aeruginosa) is a significant opportunistic pathogen associated with nosocomial infections, particularly in pediatric populations, where it can lead to severe clinical manifestations, including P. aeruginosa-associated meningitis. To meet the critical need for highly sensitive detection of P. aeruginosa, a novel fluorescent biosensor utilizing a three-way junction (TWJ) probe has been developed. This biosensor capitalizes on the specific binding interaction between P. aeruginosa and a tailored aptamer embedded within a DNA TWJ structure. Upon target binding, the double-stranded DNA branches of the TWJ undergo a conformational rearrangement, resulting in the formation of two distinct DNA \\\"Y\\\" junction structures. These structures are subsequently linked by a designed sequence, initiating a DNA polymerase/endonuclease-mediated strand displacement amplification process. The TWJ-based biosensor offers several key advantages: (i) the integration of the aptamer sequence within the TWJ probe ensures high specificity for target recognition, and (ii) the subsequent enzymatic amplification significantly enhances the sensitivity of detection. Under optimized experimental conditions, the biosensor demonstrated a broad linear detection range from 10 to 10 to 10<sup>5</sup> cfu/mL, with an exceptionally low limit of detection of 4.12 cfu/mL. Recovery studies further confirmed the reliability and robustness, highlighting its potential for clinical implementation. This innovative bio-sensing strategy represents a significant advancement in diagnostic technology, offering a promising tool for the early and accurate detection of infectious diseases in pediatric patients, with potential applications in improving clinical outcomes.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 4\",\"pages\":\"69\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03612-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03612-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pseudomonas aeruginosa (P. aeruginosa) is a significant opportunistic pathogen associated with nosocomial infections, particularly in pediatric populations, where it can lead to severe clinical manifestations, including P. aeruginosa-associated meningitis. To meet the critical need for highly sensitive detection of P. aeruginosa, a novel fluorescent biosensor utilizing a three-way junction (TWJ) probe has been developed. This biosensor capitalizes on the specific binding interaction between P. aeruginosa and a tailored aptamer embedded within a DNA TWJ structure. Upon target binding, the double-stranded DNA branches of the TWJ undergo a conformational rearrangement, resulting in the formation of two distinct DNA "Y" junction structures. These structures are subsequently linked by a designed sequence, initiating a DNA polymerase/endonuclease-mediated strand displacement amplification process. The TWJ-based biosensor offers several key advantages: (i) the integration of the aptamer sequence within the TWJ probe ensures high specificity for target recognition, and (ii) the subsequent enzymatic amplification significantly enhances the sensitivity of detection. Under optimized experimental conditions, the biosensor demonstrated a broad linear detection range from 10 to 10 to 105 cfu/mL, with an exceptionally low limit of detection of 4.12 cfu/mL. Recovery studies further confirmed the reliability and robustness, highlighting its potential for clinical implementation. This innovative bio-sensing strategy represents a significant advancement in diagnostic technology, offering a promising tool for the early and accurate detection of infectious diseases in pediatric patients, with potential applications in improving clinical outcomes.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.