Alice Barratt, Justin Welbergen, Ben Moore, Christopher Turbill
{"title":"一种小型、自由生活的鸟类为了应对捕食风险而使用的冬眠。","authors":"Alice Barratt, Justin Welbergen, Ben Moore, Christopher Turbill","doi":"10.1093/beheco/araf069","DOIUrl":null,"url":null,"abstract":"<p><p>Animal decisions trade-off the mortality risks of starvation and predation, and anti-predator behaviors generally incur a cost of reduced energy intake. Torpor and shallow rest-phase heterothermy are widespread physiological responses to starvation risk among small mammals and birds. Here, we present a field-based experimental test of the hypothesis that energy savings from torpor use can also reduce predation risk by moderating the energy cost of anti-predator behavioral responses in a small bird during winter. We manipulated perceived predation risk in wild populations of the superb fairy-wren (<i>Malurus cyaneus</i>) by playback of conspecific alarm calls during the daytime active-phase and tested for effects on body temperature measured continuously by telemetry during the nocturnal rest-phase. We found that alarm call playback was associated with subsequent rest-phase torpor bouts that were significantly deeper (minimum skin temperature: 28.7 ± 1.7 °C vs. 30.0 ± 1.5 °C) and longer (duration in torpor: 6.0 ± 2.7 h vs. 3.8 ± 2.3 h) compared to control periods. By demonstrating the connection between resting energy expenditure and energy costs of behavioral decisions during activity, our study has implications for understanding both the ecological functions of torpor and survival consequences of behavioral responses by small birds to environmental challenges.</p>","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"36 4","pages":"araf069"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207869/pdf/","citationCount":"0","resultStr":"{\"title\":\"Torpor use in response to predation risk in a small, free-living bird.\",\"authors\":\"Alice Barratt, Justin Welbergen, Ben Moore, Christopher Turbill\",\"doi\":\"10.1093/beheco/araf069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal decisions trade-off the mortality risks of starvation and predation, and anti-predator behaviors generally incur a cost of reduced energy intake. Torpor and shallow rest-phase heterothermy are widespread physiological responses to starvation risk among small mammals and birds. Here, we present a field-based experimental test of the hypothesis that energy savings from torpor use can also reduce predation risk by moderating the energy cost of anti-predator behavioral responses in a small bird during winter. We manipulated perceived predation risk in wild populations of the superb fairy-wren (<i>Malurus cyaneus</i>) by playback of conspecific alarm calls during the daytime active-phase and tested for effects on body temperature measured continuously by telemetry during the nocturnal rest-phase. We found that alarm call playback was associated with subsequent rest-phase torpor bouts that were significantly deeper (minimum skin temperature: 28.7 ± 1.7 °C vs. 30.0 ± 1.5 °C) and longer (duration in torpor: 6.0 ± 2.7 h vs. 3.8 ± 2.3 h) compared to control periods. By demonstrating the connection between resting energy expenditure and energy costs of behavioral decisions during activity, our study has implications for understanding both the ecological functions of torpor and survival consequences of behavioral responses by small birds to environmental challenges.</p>\",\"PeriodicalId\":8840,\"journal\":{\"name\":\"Behavioral Ecology\",\"volume\":\"36 4\",\"pages\":\"araf069\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207869/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/beheco/araf069\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/beheco/araf069","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Torpor use in response to predation risk in a small, free-living bird.
Animal decisions trade-off the mortality risks of starvation and predation, and anti-predator behaviors generally incur a cost of reduced energy intake. Torpor and shallow rest-phase heterothermy are widespread physiological responses to starvation risk among small mammals and birds. Here, we present a field-based experimental test of the hypothesis that energy savings from torpor use can also reduce predation risk by moderating the energy cost of anti-predator behavioral responses in a small bird during winter. We manipulated perceived predation risk in wild populations of the superb fairy-wren (Malurus cyaneus) by playback of conspecific alarm calls during the daytime active-phase and tested for effects on body temperature measured continuously by telemetry during the nocturnal rest-phase. We found that alarm call playback was associated with subsequent rest-phase torpor bouts that were significantly deeper (minimum skin temperature: 28.7 ± 1.7 °C vs. 30.0 ± 1.5 °C) and longer (duration in torpor: 6.0 ± 2.7 h vs. 3.8 ± 2.3 h) compared to control periods. By demonstrating the connection between resting energy expenditure and energy costs of behavioral decisions during activity, our study has implications for understanding both the ecological functions of torpor and survival consequences of behavioral responses by small birds to environmental challenges.
期刊介绍:
Studies on the whole range of behaving organisms, including plants, invertebrates, vertebrates, and humans, are included.
Behavioral Ecology construes the field in its broadest sense to include 1) the use of ecological and evolutionary processes to explain the occurrence and adaptive significance of behavior patterns; 2) the use of behavioral processes to predict ecological patterns, and 3) empirical, comparative analyses relating behavior to the environment in which it occurs.